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CVE-2021-26708 Overview

LPE in the Linux kernel

Bug type: race condition

Refers to 5 similar bugs in the virtual socket implementation

Major Linux distros ship CONFIG_VSOCKETS and

CONFIG_VIRTIO_VSOCKETS as a kernel modules
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Attack Surface

The vulnerable modules are automatically loaded

Just create a socket for the AF_VSOCK domain:

vsock = socket(AF_VSOCK, SOCK_STREAM, 0);

That’s available for unprivileged users

User namespaces are not needed for that
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Kernel Crash

I used the syzkaller fuzzer with custom modifications

KASAN got a suspicious kernel crash in

virtio_transport_notify_buffer_size()

The fuzzer failed to reproduce this crash

I inspected the source code and developed the reproducer manually
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Does This Look Intentional?

I found a confusing bug in vsock_stream_setsockopt():

struct sock *sk;

struct vsock_sock *vsk;

const struct vsock_transport *transport;

sk = sock->sk;

vsk = vsock_sk(sk);

transport = vsk->transport;

lock_sock(sk);

Let me look at it...
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Does This Look Intentional?

I found a confusing bug in vsock_stream_setsockopt():

struct sock *sk;

struct vsock_sock *vsk;

const struct vsock_transport *transport;

sk = sock->sk;

vsk = vsock_sk(sk);

transport = vsk->transport;

/* vsk->transport value may change here! */

lock_sock(sk);

Wait... What?
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Bugs

vsk->transport may change when the socket lock is not acquired

In that case, the local variable value is out-of-date

That is an obvious race condition bug

I found five similar bugs in net/vmw_vsock/af_vsock.c

Searching the git history helped to understand the reason

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 9 / 54



Fixes

Initially, the transport for a virtual socket was not able to change

The bugs were implicitly introduced in November 2019 when

VSOCK multi-transport support was added

Fixing this vulnerability is trivial:

sk = sock->sk;

vsk = vsock_sk(sk);

- transport = vsk->transport;

lock_sock(sk);

+ transport = vsk->transport;
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Timeline: Part 1

November 14, 2019 – Bugs were introduced

January 7, 2021 – My custom syzkaller got a crash

January 11, 2021 – I started the investigation

January 30, 2021

◮ My PoC exploit and fixing patch were ready
◮ I sent the crasher and patch to security@kernel.org
◮ Review started
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Disclosure Procedure (1)

I got very prompt replies from Linus Torvalds and Greg Kroah-Hartman

We concluded on this procedure:

1 sending my patch to LKML in public

2 merging it to the upstream and backporting to the stable trees

3 informing the distros about the security-relevance via linux-distros ML

4 disclosing that at oss-security@lists.openwall.com when distros allow me

The first step is questionable, though
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Disclosure Procedure (2)

Linus decided to merge my patch without any disclosure embargo

Linus:

“This patch doesn’t look all that different from the kinds of patches we do every day”

I obeyed and proposed that I should send it to LKML in public

Rationale

Anybody can find kernel vulnerability fixes by filtering kernel commits that didn’t

appear on the mailing lists https://arxiv.org/abs/2009.01694
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Timeline: Part 2

February 2, 2021 – The v2 of my patch was merged into Linus’ tree

February 4, 2021

◮ Greg applied it to the affected stable trees

◮ I informed linux-distros ML that the fixed bugs are exploitable

◮ I asked how much time Linux distros need before my public disclosure

◮ But I got this reply:

If the patch is committed upstream, then the issue is public.

Please send to oss-security immediately.

◮ I made the public announcement: https://seclists.org/oss-sec/2021/q1/107

February 5, 2021 – CVE-2021-26708 is assigned
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Pondering over the Disclosure Procedure

The question is rising:

Is this "merge ASAP" procedure compatible with the linux-distros mailing list?

Counter-example: how I reported CVE-2017-2636 to security@kernel.org

Kees Cook and Greg organized a one-week disclosure embargo

Linux distributions in the linux-distros ML integrated my fix in their security

updates in no rush

Security updates were published synchronously when the embargo ended

More info in this article: https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html
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CVE-2021-26708

NOW ABOUT THE MEMORY CORRUPTION
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Provoking the Race Condition

I exploited the race condition in vsock_stream_setsockopt()

Reproducing it requires two threads

The first one calls setsockopt()

setsockopt(vsock, PF_VSOCK, SO_VM_SOCKETS_BUFFER_SIZE,

&size, sizeof(unsigned long));

The second thread should change the virtual socket transport
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Changing VSOCK Transport

It is performed by reconnecting to the virtual socket:

struct sockaddr_vm addr = {

.svm_family = AF_VSOCK,

};

addr.svm_cid = VMADDR_CID_LOCAL;

connect(vsock, (struct sockaddr *)&addr, sizeof(struct sockaddr_vm));

addr.svm_cid = VMADDR_CID_HYPERVISOR;

connect(vsock, (struct sockaddr *)&addr, sizeof(struct sockaddr_vm));

Meanwhile, vsock_stream_setsockopt() in a parallel thread is

trying to acquire the lock
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Race Condition: Full Picture

Thread 1: reconnecting to vsock

vsock_stream_connect() /* VMADDR_CID_LOCAL */

vsock_stream_connect() /* VMADDR_CID_HYPERVISOR */

lock_sock() /* locked successfully */

vsock_assign_transport()

vsock_deassign_transport()

virtio_transport_destruct()

kfree(virtio_vsock_sock)

vsk->transport = NULL

release_sock()

Thread 2: setsockopt() for vsock

vsock_stream_setsockopt()

transport = vsk->transport

lock_sock() /* can’t lock, waiting */

/* finally locked successfully, proceed */

vsock_update_buffer_size()

transport->notify_buffer_size()

virtio_transport_notify_buffer_size()

virtio_vsock_sock->buf_alloc = *val /* UAF */
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Using Out-of-date Value From a Local Variable
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Memory Corruption

Write-after-free for virtio_vsock_sock object

The size of this object is 64 bytes

This object lives in kmalloc-64 slab cache

The buf_alloc field has type u32 and resides at offset 40

The value written buf_alloc is controlled by the attacker

Four controlled bytes are written to the freed memory
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Fuzzing Miracle (1)

syzkaller didn’t manage to reproduce this crash

I had to develop the reproducer manually

But why did the fuzzer fail to do that?

Looking at vsock_update_buffer_size() code gives the answer:

if (val != vsk->buffer_size &&

transport && transport->notify_buffer_size)

transport->notify_buffer_size(vsk, &val);

vsk->buffer_size = val;
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Fuzzing Miracle (2)

For memory corruption, setsockopt() should be called with different

SO_VM_SOCKETS_BUFFER_SIZE value each time

A fun hack from my first reproducer:

struct timespec tp;

unsigned long size = 0;

clock_gettime(CLOCK_MONOTONIC, &tp);

size = tp.tv_nsec;

setsockopt(vsock, PF_VSOCK, SO_VM_SOCKETS_BUFFER_SIZE,

&size, sizeof(unsigned long));
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Fuzzing Miracle (3)

Upstream syzkaller doesn’t do things like that

Syscall params are chosen when syzkaller generates fuzzing inputs

Inputs don’t change when the fuzzer executes them on the target

I still don’t completely understand how syzkaller got this crash

syzkaller did some lucky multithreaded magic with vsock buffer size

limits but then failed to reproduce it
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CVE-2021-26708

NOW ABOUT EXPLOITATION,

STEP BY STEP
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Exploitation Target

I’ve chosen Fedora 33 Server as the exploitation target

The kernel version: 5.10.11-200.fc33.x86_64

I had a goal to bypass SMEP and SMAP

Bypassing KASLR is included, of course
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Four Bytes of Power

Write-after-free of a 4-byte controlled value to a 64-byte kernel object at offset 40

That’s quite limited memory corruption

I had a hard time turning it into a real weapon

Here and further I use images of the artifacts from the State Hermitage Museum in Russia. I love this wonderful museum!
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Heap Spraying Requirements

I started to work on stable heap spraying

The exploit should perform some userspace activity that makes the

kernel allocate another 64-byte object at the location of freed

virtio_vsock_sock

4-byte write-after-free should corrupt the sprayed object instead of

unused free kernel memory
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Experimental Heap Spraying

I made quick experimental spraying with add_key syscall

I called add_key several times right after the second connect() to vsock

while a parallel thread finishes the corrupting setsockopt()

ftrace allowed to confirm that the freed virtio_vsock_sock is overwritten

I saw that successful heap spraying was possible

The next step: finding a 64-byte kernel object that can provide a stronger

exploit primitive when it has four corrupted bytes at offset 40

Huh, not so easy!
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The iovec Technique is Useless Here

I tried iovec technique from the Bad Binder by Maddie Stone and Jann Horn

A carefully corrupted iovec object can be used

for arbitrary read/write

No, I got triple fail with this idea:

1 64-byte iovec is allocated on the kernel stack, not the heap

2 Four bytes at offset 40 overwrite iovec.iov_len, not iovec.iov_base

3 This iovec exploitation trick is dead since the Linux kernel version 4.13,

awesome Al Viro killed it with the commit 09fc68dc66f7597b in June 2017
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Searching for a Special Kernel Object

I had exhausting experiments with various kernel objects suitable for heap spraying

I found msgsnd() syscall that creates struct msg_msg in the kernelspace:

/* message header */

struct msg_msg {

struct list_head m_list; /* 0 16 */

long int m_type; /* 16 8 */

size_t m_ts; /* 24 8 */

struct msg_msgseg * next; /* 32 8 */

void * security; /* 40 8 */

};

/* message data follows */

If struct msgbuf in the userspace has 16-byte mtext, the corresponding msg_msg is

created in kmalloc-64 slab cache, just like virtio_vsock_sock!
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Four Bytes of Power

The 4-byte write-after-free can corrupt the void *security pointer at offset 40:

/* message header */

struct msg_msg {

struct list_head m_list; /* 0 16 */

long int m_type; /* 16 8 */

size_t m_ts; /* 24 8 */

struct msg_msgseg * next; /* 32 8 */

void * security; /* 40 8 */

};

/* message data follows */

Jokingly, I used this security field to break Linux security
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Arbitrary Free

msg_msg.security points to the kernel data allocated by lsm_msg_msg_alloc()

It is used by SELinux in the case of Fedora

It is freed by security_msg_msg_free() when msg_msg is received

Corrupting 4 least significant bytes

of msg_msg.security provides arbitrary free!

That is a much stronger exploit primitive
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What to Free?

After achieving arbitrary free I started to think about where to aim it

And here I used the trick from my CVE-2019-18683 exploit:

◮ Second connect() to vsock calls vsock_deassign_transport()

◮ It sets vsk->transport to NULL

◮ That makes the vulnerable setsockopt() hit the kernel warning

◮ It happens in virtio_transport_send_pkt_info() just after UAF

◮ My exploit can parse this kernel warning and extract useful info!
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Kernel Warning Full of Secrets

WARNING: CPU: 1 PID: 6739 at net/vmw_vsock/virtio_transport_common.c:34

...

CPU: 1 PID: 6739 Comm: racer Tainted: G W 5.10.11-200.fc33.x86_64 #1

Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014

RIP: 0010:virtio_transport_send_pkt_info+0x14d/0x180 [vmw_vsock_virtio_transport_common]

...

RSP: 0018:ffffc90000d07e10 EFLAGS: 00010246

RAX: 0000000000000000 RBX: ffff888103416ac0 RCX: ffff88811e845b80

RDX: 00000000ffffffff RSI: ffffc90000d07e58 RDI: ffff888103416ac0

RBP: 0000000000000000 R08: 00000000052008af R09: 0000000000000000

R10: 0000000000000126 R11: 0000000000000000 R12: 0000000000000008

R13: ffffc90000d07e58 R14: 0000000000000000 R15: ffff888103416ac0

FS: 00007f2f123d5640(0000) GS:ffff88817bd00000(0000) knlGS:0000000000000000

CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033

CR2: 00007f81ffc2a000 CR3: 000000011db96004 CR4: 0000000000370ee0

Call Trace:

virtio_transport_notify_buffer_size+0x60/0x70 [vmw_vsock_virtio_transport_common]

vsock_update_buffer_size+0x5f/0x70 [vsock]

vsock_stream_setsockopt+0x128/0x270 [vsock]
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Kernel Infoleak

A quick debugging session with gdb showed that:

◮ RCX contains the kernel address of the freed virtio_vsock_sock
◮ RBX contains the kernel address of vsock_sock

On Fedora, unprivileged users can open and parse /dev/kmsg

If one more warning arrives at the kernel log,

the exploit won one more race

The exploit can parse the kernel log and

get the addresses from the registers
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Further Exploitation Plan

My further exploitation plan was to use arbitrary free for use-after-free:

1 Free some object at the address that leaked in the kernel warning

2 Perform heap spraying to overwrite that object with controlled data

3 Get more power using the corrupted object
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The Target for Arbitrary Free

Arbitrary free for vsock_sock address (from RBX) is useless

It lives in a dedicated slab cache where I can’t do heap spraying

So I invented how to exploit use-after-free on msg_msg (from RCX)

For overwriting msg_msg I used wonderful setxattr() &

userfaultfd() heap spraying technique by Vitaly Nikolenko
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Arbitrary Read with msg_msg: Part 1
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Arbitrary Read with msg_msg: Part 2

Receiving this crafted msg_msg manipulates the System V message queue

That breaks the kernel because the msg_msg.m_list pointer is invalid

msgrcv() documentation for the win!

MSG_COPY flag allows fetching a copy of the message nondestructively
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Exploiting Arbitrary Read (1)

1. Get the kernel address of a good msg_msg

win the race on a virtual socket

call spraying msgsnd() after the memory corruption

parse /dev/kmsg and get the kernel address of this good msg_msg from RCX

also, save the kernel address of vsock_sock from RBX
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Exploiting Arbitrary Read (2)

2. Execute arbitrary free against good msg_msg using a corrupted msg_msg
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Exploiting Arbitrary Read (3)

3. Overwrite good msg_msg with controlled data using setxattr() & userfaultfd()
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Exploiting Arbitrary Read (4)

4. Read vsock_sock to the userspace using msgrcv() for the overwritten msg_msg

ret = msgrcv(msg_locations[0].msq_id, kmem, ARB_READ_SZ, 0,

IPC_NOWAIT | MSG_COPY | MSG_NOERROR);
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Sorting the Loot

That’s what I found inside the vsock_sock kernel object:

1 Plenty of pointers to objects from dedicated slab caches

2 struct mem_cgroup *sk_memcg pointer at offset 664
◮ mem_cgroup objects live in the kmalloc-4k slab cache

◮ I tried to call kfree() for it and the kernel panicked instantly

3 const struct cred *owner pointer at offset 840
◮ It points to the credentials that I want to overwrite for privilege escalation

◮ It’s a pity that cred lives in dedicated cred_jar slab cache

4 void (*sk_write_space)(struct sock *) function pointer at offset 688
◮ It is set to the address of sock_def_write_space() kernel function

◮ That can be used for calculating the KASLR offset
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Good Old Trick with sk_buff

I used it in my exploit for CVE-2017-2636 in the Linux kernel

I turned double free for a kmalloc-8192 object into use-after-free on sk_buff

I decided to repeat that trick

◮ A network-related buffer in the kernel is represented by sk_buff

◮ This object has skb_shared_info with destructor_arg

◮ Creating a 2800-byte network packet in the userspace will make

skb_shared_info be allocated in the kmalloc-4k slab cache

◮ That’s where mem_cgroup objects live as well!
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Use-after-free on sk_buff

1 Create one client socket and 32 server sockets (for AF_INET,

SOCK_DGRAM, IPPROTO_UDP)

2 Send a 2800-byte buffer filled with 0x42 to each server socket using sendto()

3 Perform arbitrary read for vsock_sock (described earlier)

4 Calculate possible sk_buff kernel address as sk_memcg plus 4096 (the next

element in kmalloc-4k)

5 Perform arbitrary read for this possible sk_buff address

6 If 0x42 bytes are found, perform arbitrary free against the sk_buff

7 Otherwise, add 4096 to the possible sk_buff address and go to step 5
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The Payload for Overwriting skb_shared_info
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Control Flow Hijack

I didn’t manage to find a stack pivoting gadget in vmlinuz-5.10.11-200.fc33.x86_64

that can work in my restrictions

So I performed arbitrary write in one shot

SMEP and SMAP protection is bypassed!

/*

* A single ROP gadget for arbitrary write:

* mov rdx, qword ptr [rdi + 8] ; mov qword ptr [rdx + rcx*8], rsi ; ret

* Here rdi stores uinfo_p address, rcx is 0, rsi is 1

*/

uinfo_p->callback = ARBITRARY_WRITE_GADGET + kaslr_offset;

uinfo_p->desc = owner_cred + CRED_EUID_EGID_OFFSET; /* value for "qword ptr [rdi + 8]" */

uinfo_p->desc = uinfo_p->desc - 1; /* rsi value 1 should not get into euid */

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 49 / 54



Arbitrary Write Using skb_shared_info

This weapon is used twice to get root privileges:

1 Write zeros to effective uid and gid

2 Write zeros to uid and gid

Later I managed to perform stack pivoting using a JOP-chain

And I managed to bypass the Linux Kernel Runtime Guard (LKRG)

I’m preparing this material for publishing, stay tuned!
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Demo Time
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Possible Exploit Mitigation

Exploiting this vulnerability is impossible with the Linux kernel heap quarantine

◮ Because this memory corruption happens very shortly after the race condition
◮ See the article about my SLAB_QUARANTINE prototype

Against kernel module autoloading by unprivileged users – grsecurity MODHARDEN

Against userfaultfd() abuse – setting /proc/sys/vm/unprivileged_userfaultfd to 0

Against infoleak via kernel log – setting kernel.dmesg_restrict sysctl to 1

Against calling my ROP gadget –

Control Flow Integrity (see the technologies on my Linux Kernel Defence Map)

Against use-after-free (hopefully in the future) –

ARM Memory Tagging Extension (MTE) support for the kernel, on ARM

[rumors] Against heap spraying –

grsecurity Wunderwaffe called AUTOSLAB (we don’t know much about it)
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Conclusion

Investigating and fixing CVE-2021-26708,

developing the PoC exploit,

and preparing this talk

was a big deal for me

I hope you enjoyed it!

I managed to turn the race condition with a very limited memory corruption

into arbitrary read/write for the Linux kernel memory

I’ve published a detailed write-up:
https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html
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Thanks! Your questions?

alex.popov@linux.com
@a13xp0p0v

http://blog.ptsecurity.com/
@ptsecurity
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