Four Bytes of Power:

Exploiting CVE-2021-26708 in the Linux Kernel

Alexander Popov
Positive Technologies

April 9, 2021

About Me

o Alexander Popov

o Linux kernel developer since 2013

o Speaker at conferences:

OffensiveCon, ZerOCon, Linux Security Summit, Still Hacking Anyway,
Open Source Summit, PHDays, Linux Plumbers and others

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

© CVE-2021-26708 overview
» Bugs and fixes
» Disclosure procedure
@ Exploitation for local privilege escalation on x86 64
» Hitting the race condition
» Four-byte memory corruption
» Long way to arbitrary read/write

© Exploit demo on Fedora 33 Server bypassing SMEP and SMAP
@ Possible exploit mitigation

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

CVE-2021-26708 Overview

o LPE in the Linux kernel
o Bug type: race condition
o Refers to 5 similar bugs in the virtual socket implementation

o Major Linux distros ship CONFIG VSOCKETS and
CONFIG_VIRTIO VSOCKETS as a kernel modules

Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Attack Surface

o The vulnerable modules are automatically loaded

o Just create a socket for the AF VSOCK domain:

vsock = socket (AF_VSOCK, SOCK_STREAM, 0);

o That's available for unprivileged users

o User namespaces are not needed for that

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Kernel Crash

o | used the syzkaller fuzzer with custom modifications

o KASAN got a suspicious kernel crash in

virtio_transport _notify buffer _size()

o The fuzzer failed to reproduce this crash &

o | inspected the source code and developed the reproducer manually

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Does This Look Intentional?

| found a confusing bug in vsock stream setsockopt():

struct sock *sk;
struct vsock_sock *vsk; Let me look at it
const struct vsock_transport *transport;

sk = sock->sk;
vsk = vsock_sk(sk);
transport = vsk->transport;

lock_sock(sk);

Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Alexander Popov

Does This Look Intentional?

| found a confusing bug in vsock stream setsockopt():

struct sock *sk;
struct vsock_sock *vsk; Wait... What?
const struct vsock_transport *transport;

sk = sock->sk;

vsk = vsock_sk(sk);

transport = vsk->transport;

/* vsk->transport value may change here! */
lock_sock(sk);

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

o vsk->transport may change when the socket lock is not acquired
o In that case, the local variable value is out-of-date

o That is an obvious race condition bug

o | found five similar bugs in net/vmw_vsock/af vsock.c

o Searching the git history helped to understand the reason

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

o Initially, the transport for a virtual socket was not able to change

o The bugs were implicitly introduced in November 2019 when
VSOCK multi-transport support was added

o Fixing this vulnerability is trivial:

sk = sock->sk;
vsk = vsock_sk(sk);

- transport = vsk->transport;
lock_sock(sk) ;

+ transport = vsk->transport;

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Timeline: Part 1

o November 14, 2019 — Bugs were introduced
o January 7, 2021 — My custom syzkaller got a crash
o January 11, 2021 — | started the investigation

e January 30, 2021

» My PoC exploit and fixing patch were ready
» | sent the crasher and patch to security@kernel.org
» Review started

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Disclosure Procedure (1)

@ | got very prompt replies from Linus Torvalds and Greg Kroah-Hartman

@ We concluded on this procedure:

@ sending my patch to LKML in public
@ merging it to the upstream and backporting to the stable trees
@ informing the distros about the security-relevance via linux-distros ML

@ disclosing that at oss-security@lists.openwall.com when distros allow me

o The first step is questionable, though

Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Alexander Popov

Disclosure Procedure (2)

@ Linus decided to merge my patch without any disclosure embargo

Linus:
“This patch doesn't look all that different from the kinds of patches we do every day” J

o | obeyed and proposed that | should send it to LKML in public

Rationale
Anybody can find kernel vulnerability fixes by filtering kernel commits that didn't

appear on the mailing lists https://arxiv.org/abs/2009.01694

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

https://arxiv.org/abs/2009.01694

Timeline: Part 2

@ February 2, 2021 — The v2 of my patch was merged into Linus’ tree
o February 4, 2021

» Greg applied it to the affected stable trees

v

| informed linux-distros ML that the fixed bugs are exploitable

v

| asked how much time Linux distros need before my public disclosure

v

But | got this reply:

If the patch is committed upstream, then the issue is public.

Please send to oss-security immediately.

» | made the public announcement: https://seclists.org/oss-sec/2021/q1/107

@ February 5, 2021 — CVE-2021-26708 is assigned

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

https://seclists.org/oss-sec/2021/q1/107

Pondering over the Disclosure Procedure

The question is rising:
Is this "merge ASAP" procedure compatible with the linux-distros mailing list?

Counter-example: how | reported CVE-2017-2636 to security@kernel.org
o Kees Cook and Greg organized a one-week disclosure embargo
@ Linux distributions in the linux-distros ML integrated my fix in their security
updates in no rush

@ Security updates were published synchronously when the embargo ended

@ More info in this article: https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html

CVE-2021-26708

NOW ABOUT THE MEMORY CORRUPTION

Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Provoking the Race Condition

o | exploited the race condition in vsock stream setsockopt()
o Reproducing it requires two threads

o The first one calls setsockopt()

setsockopt (vsock, PF_VSOCK, SO_VM_SOCKETS_BUFFER_SIZE,

&size, sizeof (unsigned long));

o The second thread should change the virtual socket transport

Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Alexander Popov

Changing VSOCK Transport

o It is performed by reconnecting to the virtual socket:

struct sockaddr_vm addr = {
.svm_family = AF_VSOCK,
};
addr.svm_cid = VMADDR_CID_LOCAL;
connect (vsock, (struct sockaddr *)&addr, sizeof (struct sockaddr_vm));

addr.svm_cid = VMADDR_CID_HYPERVISOR;

connect (vsock, (struct sockaddr *)&addr, sizeof (struct sockaddr_vm));

o Meanwhile, vsock stream setsockopt() in a parallel thread is

trying to acquire the lock

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Race Condition: Full Picture

Thread 1: reconnecting to vsock
vsock_stream_connect() /* VMADDR_CID_LOCAL */

vsock_stream_connect () /* VMADDR_CID_HYPERVISOR */
lock_sock() /* locked successfully */
vsock_assign_transport ()
vsock_deassign_transport ()
virtio_transport_destruct ()
kfree(virtio_vsock_sock)

vsk->transport = NULL

release_sock()

Thread 2: setsockopt() for vsock
vsock_stream_setsockopt ()
transport = vsk->transport

lock_sock() /* can’t lock, waiting */

/* finally locked successfully, proceed */
vsock_update_buffer_size()
transport->notify_buffer_size()
virtio_transport_notify_buffer_size()
virtio_vsock_sock->buf_alloc = *val /* UAF */

Alexander Popov

Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Using Out-of-date Value From a Local Variable

USOCK_STREAM-SETSOCKOPTU

- — - .
e —
L

EHZ DID T MISS ANYTHING2

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Memory Corruption

o Write-after-free for virtio vsock sock object

o The size of this object is 64 bytes

o This object lives in kmalloc-64 slab cache

o The buf alloc field has type u32 and resides at offset 40
o The value written buf alloc is controlled by the attacker

o Four controlled bytes are written to the freed memory

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Fuzzing Miracle (1)

o syzkaller didn't manage to reproduce this crash
o | had to develop the reproducer manually
o But why did the fuzzer fail to do that?

o Looking at vsock update buffer size() code gives the answer:

if (val != vsk->buffer_size &&
transport && transport—>notify_buffer_size)
transport->notify_buffer_size(vsk, &val);

vsk->buffer_size = val;

Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Alexander Popov

Fuzzing Miracle (2)

o For memory corruption, setsockopt() should be called with different

SO VM SOCKETS BUFFER SIZE value each time

@ A fun hack from my first reproducer:

struct timespec tp;

unsigned long size = 0;

clock_gettime (CLOCK_MONOTONIC, &tp);
size = tp.tv_nsec;
setsockopt (vsock, PF_VSOCK, SO_VM_SOCKETS_BUFFER_SIZE,

&size, sizeof (unsigned long));

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Fuzzing Miracle (3)

o Upstream syzkaller doesn't do things like that

o Syscall params are chosen when syzkaller generates fuzzing inputs
o Inputs don't change when the fuzzer executes them on the target

o | still don't completely understand how syzkaller got this crash @

o syzkaller did some lucky multithreaded magic with vsock buffer size

limits but then failed to reproduce it

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

CVE-2021-26708

NOW ABOUT EXPLOITATION,
STEP BY STEP

Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Exploitation Target

o I've chosen Fedora 33 Server as the exploitation target
o The kernel version: 5.10.11-200.fc33.x86 64
o | had a goal to bypass SMEP and SMAP

o Bypassing KASLR is included, of course

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Four Bytes of Power

Write-after-free of a 4-byte controlled value to a 64-byte kernel object at offset 40
o That's quite limited memory corruption
o | had a hard time turning it into a real weapon

Here and further | use images of the artifacts from the State Hermitage Museum in Russia. | love this wonderful museum!

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

https://www.hermitagemuseum.org/wps/portal/hermitage?lng=en

Heap Spraying Requirements

o | started to work on stable heap spraying

o The exploit should perform some userspace activity that makes the

kernel allocate another 64-byte object at the location of freed
virtiovsock sock
o 4-byte write-after-free should corrupt the sprayed object instead of

unused free kernel memory

Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Alexander Popov

Experimental Heap Spraying

o | made quick experimental spraying with add key syscall

o | called add key several times right after the second connect() to vsock
while a parallel thread finishes the corrupting setsockopt()

o ftrace allowed to confirm that the freed virtio vsock sock is overwritten

o | saw that successful heap spraying was possible

o The next step: finding a 64-byte kernel object that can provide a stronger

exploit primitive when it has four corrupted bytes at offset 40

@ Huh, not so easy!

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

The iovec Technique is Useless Here

o | tried iovec technique from the Bad Binder by Maddie Stone and Jann Horn

A carefully corrupted iovec object can be used

for arbitrary read/write

@ No, | got triple fail with this idea:

@ 64-byte iovec is allocated on the kernel stack, not the heap
@ Four bytes at offset 40 overwrite iovec.iov len, not iovec.iov base
© This iovec exploitation trick is dead since the Linux kernel version 4.13,

awesome Al Viro killed it with the commit 09fc68dc66f7597b in June 2017

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html

Searching for a Special Kernel Object

@ | had exhausting experiments with various kernel objects suitable for heap spraying

@ | found msgsnd() syscall that creates struct msg msg in the kernelspace:

/* message header */

struct msg_msg {

struct list_head m_list; /* 0 16 */
long int m_type; /* 16 8 */
size_t m_ts; /* 24 8 */
struct msg_msgseg * next; /* 32 8 */
void * security; /* 40 8 */

3

/* message data follows */

o If struct msgbuf in the userspace has 16-byte mtext, the corresponding msg msg is

created in kmalloc-64 slab cache, just like virtio vsock sock!

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Four Bytes of Power

o The 4-byte write-after-free can corrupt the void *security pointer at offset 40:

/* message header */

struct msg_msg {

struct list_head m_list; /* 0 16 */
long int m_type; /* 16 8 */
size_t m_ts; /* 24 8 */
struct msg_msgseg * next; /* 32 8 x/
void * security; /* 40 8 */

3

/* message data follows */

o Jokingly, | used this security field to break Linux security @

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Arbitrary Free

@ msg__msg.security points to the kernel data allocated by Ism msg msg alloc()
o It is used by SELinux in the case of Fedora

o It is freed by security msg msg free() when msg msg is received

o Corrupting 4 least significant bytes

ARBITRARY FREE
of msg msg.security provides arbitrary free!

@ That is a much stronger exploit primitive

More effective,
but where to aim?

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

What to Free?

o After achieving arbitrary free | started to think about where to aim it

@ And here | used the trick from my CVE-2019-18683 exploit:

» Second connect() to vsock calls vsock deassign transport()

» It sets vsk->transport to NULL

v

That makes the vulnerable setsockopt() hit the kernel warning

v

It happens in virtio transport send pkt info() just after UAF

v

My exploit can parse this kernel warning and extract useful info!

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

https://a13xp0p0v.github.io/2020/02/15/CVE-2019-18683.html

Kernel Warning Full of Secrets

WARNING: CPU: 1 PID: 6739 at net/vmw_vsock/virtio_transport_common.c:34

CPU: 1 PID: 6739 Comm: racer Tainted: G w 5.10.11-200.fc33.x86_64 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014

RIP: 0010:virtio_transport_send_pkt_info+0x14d/0x180 [vmw_vsock_virtio_transport_common]

RSP: 0018:ffffc90000d07e10 EFLAGS: 00010246

RAX: 0000000000000000 RBX: ffff888103416acO RCX: ffff88811e845b80

RDX: 00000000ffffffff RSI: ffffc90000d07e58 RDI: ffff888103416acO

RBP: 0000000000000000 R0O8: 00000000052008af R09: 0000000000000000

R10: 0000000000000126 R11: 0000000000000000 R12: 0000000000000008

R13: ffffc90000d07e58 R14: 0000000000000000 R15: ffff888103416acO

FS: 00007£2£123d5640(0000) GS:ffff88817bd00000(0000) knlGS:0000000000000000

CS: 0010 DS: 0000 ES: 0000 CRO: 0000000080050033

CR2: 00007f81ffc2a000 CR3: 000000011db96004 CR4: 0000000000370eel

Call Trace:
virtio_transport_notify buffer_size+0x60/0x70 [vmw_vsock_virtio_transport_common]
vsock_update_buffer_size+0x5f/0x70 [vsock]

vsock_stream_setsockopt+0x128/0x270 [vsock]

Alexander Four Bytes of Powe 6708 in the Linux Kernel

Kernel Infoleak

o A quick debugging session with gdb showed that:
» RCX contains the kernel address of the freed virtio vsock sock
» RBX contains the kernel address of vsock sock

@ On Fedora, unprivileged users can open and parse /dev/kmsg

KERNEL INFOLEAK

o If one more warning arrives at the kernel log,
the exploit won one more race
@ The exploit can parse the kernel log and

get the addresses from the registers

| SEE THE KERNEL POINTERS!

ritctfrom Hermiage

Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Alexander Popov

Further Exploitation Plan

My further exploitation plan was to use arbitrary free for use-after-free:

O Free some object at the address that leaked in the kernel warning
@ Perform heap spraying to overwrite that object with controlled data

© Get more power using the corrupted object

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

The Target for Arbitrary Free

o Arbitrary free for vsock sock address (from RBX) is useless
o It lives in a dedicated slab cache where | can’t do heap spraying
o So | invented how to exploit use-after-free on msg_msg (from RCX)

o For overwriting msg_msg | used wonderful setxattr() &

userfaultfd() heap spraying technique by Vitaly Nikolenko

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Original struct msg_msg

Arbitrary Read with msg msg: Part 1

struct list_head m_list = Oxffff8881XXXXXXXX;
long int m_type = 1;

size_t m_ts = 16;

struct msg_msgseg *next = NULL;

void *security = Oxffff888LYYYYYYYY;

msg_msg data

Alexander

Four Bytes of Powe

Overwritten struct msg_msg

struct list_head m_list = Oxa5a5a5a5a5a5a5a5;
long int m_type = 0x1337;
size_t m_ts = 6096;

struct msg_msgseg *next = 0xffff8881

void *security = Oxffff8881YYYYYYYY;

msg_msg data

|- - — - - - - - - - _

kernel data for reading |

Fake struct msg_msgseg

A

kernel data for reading

Exploiting CVE-2021-26708

e Linux Kernel

Arbitrary Read with msg msg: Part 2

@ Receiving this crafted msg msg manipulates the System V message queue
o That breaks the kernel because the msg msg.m list pointer is invalid &
@ msgrcv() documentation for the win!

o MSG_COPY flag allows fetching a copy of the message nondestructively @

ARBITRARY READING OF KERNEL MEMORY

LOAD IT AND LET'S GO READING!

artifact from Hermitage

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Exploiting Arbitrary Read (1)

1. Get the kernel address of a good msg msg

@ win the race on a virtual socket
o call spraying msgsnd() after the memory corruption

o parse /dev/kmsg and get the kernel address of this good msg msg from RCX

@ also, save the kernel address of vsock sock from RBX

Alexander Popov

Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Exploiting Arbitrary Read (2)

2. Execute arbitrary free against good msg msg using a corrupted msg msg

corrupted msg_msg good msg_msg
>

struct list_head m_list = Oxffff8881XXXXXXXX; struct list_head m_list = Oxffff6881NNNNNNNN;
long int m_type = 1; long int m_type = 1;
size_t m_ts = 16; size_t m_ts = 16;
struct msg_msgseg *next = NULL; struct msg_msgseg *next = NULL;
void *security = Oxffff88812222Z27Z7Z7; void *security = 0xffff8881YYYYYYYY;

msg_msg data msg_msg data

SELinux data SELinux data

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Exploiting Arbitrary Read

3. Overwrite good msg msg with controlled data using setxattr() & userfaultfd()

corrupted msg_msg overwritten msg_msg vsock_sock
>
struct list_head m_list = Oxffff8881XXXXXXXX; struct list_head m_list = Oxa5a5a5a5a5a5a5a5;
long int m_type = 1; long int m_type = 0x1337;
size_t m_ts = 16; size_t m_ts = 6096; kernel data for reading

struct msg_msgseg *next = NULL; struct msg_msgseg *next = 0xffff8881 o

void *security = 0xffff8881 b void *security = Oxffff8881YYYYYYYY;

msg_msg data msg_msg data

| kernel data for reading |

SELinux data

SELinux data

Alexander Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Exploiting Arbitrary Read (4)

4. Read vsock sock to the userspace using msgrcv() for the overwritten msg msg

ret = msgrcv(msg_locations[0].msq_id, kmem, ARB_READ_SZ, O,
IPC_NOWAIT | MSG_COPY | MSG_NOERROR);

READ STRUCT VSOCK_SOCK
TO THE USERSPACE

WHAT'S INSIDE?

et fom Hrmitage

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Sorting the Loot

That's what | found inside the vsock sock kernel object:
O Plenty of pointers to objects from dedicated slab caches @

@ struct mem cgroup *sk memcg pointer at offset 664
» mem _cgroup objects live in the kmalloc-4k slab cache

» | tried to call kfree() for it and the kernel panicked instantly

@ const struct cred *owner pointer at offset 840
» It points to the credentials that | want to overwrite for privilege escalation

> It's a pity that cred lives in dedicated cred jar slab cache &

© void (*sk write space)(struct sock *) function pointer at offset 688
» It is set to the address of sock def write space() kernel function

» That can be used for calculating the KASLR offset @

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Good Old Trick with sk _buff

o | used it in my exploit for CVE-2017-2636 in the Linux kernel

o | turned double free for a kmalloc-8192 object into use-after-free on sk buff

o | decided to repeat that trick
» A network-related buffer in the kernel is represented by sk buff
» This object has skb shared info with destructor arg
» Creating a 2800-byte network packet in the userspace will make
skb shared info be allocated in the kmalloc-4k slab cache

» That's where mem cgroup objects live as well!

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html

Use-after-free on sk buff

@ Create one client socket and 32 server sockets (for AF_INET,
SOCK _DGRAM, IPPROTO_UDP)

Q Send a 2800-byte buffer filled with 0x42 to each server socket using sendto()

© Perform arbitrary read for vsock sock (described earlier)

Q Calculate possible sk buff kernel address as sk _memcg plus 4096 (the next
element in kmalloc-4k)

© Perform arbitrary read for this possible sk buff address

O If 0x42 bytes are found, perform arbitrary free against the sk buff

@ Otherwise, add 4096 to the possible sk buff address and go to step 5

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

The Payload for Overwriting skb_shared info

xattr payload for overwriting sk_buff
ubuf_info T
‘ | MY_UINFO_OFFSET = 256

void (*callback)(struct ubuf_info *, bool)
long unsigned int desc

SKB_SHINFO_OFFSET = 3776

skb_shared_info_

tx_flags

- destructor_arg

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Control Flow Hijack

o | didn't manage to find a stack pivoting gadget in vmlinuz-5.10.11-200.fc33.x86 64
that can work in my restrictions

@ So | performed arbitrary write in one shot

@ SMEP and SMAP protection is bypassed!

/*

* A single ROP gadget for arbitrary write:

* mov rdx, gword ptr [rdi + 8] ; mov gword ptr [rdx + rcx*8], rsi ; ret

* Here rdi stores uinfo_p address, rcx is 0, rsi is 1

*/

uinfo_p->callback = ARBITRARY_WRITE_GADGET + kaslr_offset;

uinfo_p->desc = owner_cred + CRED_EUID_EGID_OFFSET; /* value for "qword ptr [rdi + 8]" */

uinfo_p->desc = uinfo_p->desc - 1; /# rsi value 1 should not get into euid */

Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Alexander Popov

Arbitrary Write Using skb _shared info

H H - Y . ARBITRARY WRITE WITH A SINGLE ROP GADGET:
This weapon is used twice to get root privileges: e T SINCLE RO

@ Write zeros to effective uid and gid

© Write zeros to uid and gid

@ Later | managed to perform stack pivoting using a JOP-chain
@ And | managed to bypass the Linux Kernel Runtime Guard (LKRG)

@ |I'm preparing this material for publishing, stay tuned!

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

Alexander Popov Four Bytes of Pow: Exploiting CVE-2021-26708 in the Linux Kernel

Possible Exploit Mitigation

Exploiting this vulnerability is impossible with the Linux kernel heap quarantine

» Because this memory corruption happens very shortly after the race condition
» See the article about my SLAB_ QUARANTINE prototype

Against kernel module autoloading by unprivileged users — grsecurity MODHARDEN
Against userfaultfd() abuse — setting /proc/sys/vm/unprivileged userfaultfd to 0
Against infoleak via kernel log — setting kernel.dmesg restrict sysctl to 1
Against calling my ROP gadget —

Control Flow Integrity (see the technologies on my Linux Kernel Defence Map)

(]

Against use-after-free (hopefully in the future) —

ARM Memory Tagging Extension (MTE) support for the kernel, on ARM
[rumors] Against heap spraying —

grsecurity Wunderwaffe called AUTOSLAB (we don't know much about it)

(]

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

https://a13xp0p0v.github.io/2020/11/30/slab-quarantine.html
https://github.com/a13xp0p0v/linux-kernel-defence-map

Conclusion

@ Investigating and fixing CVE-2021-26708,
developing the PoC exploit,
and preparing this talk

was a big deal for me

o | hope you enjoyed it!
@ | managed to turn the race condition with a very limited memory corruption
into arbitrary read/write for the Linux kernel memory

o |'ve published a detailed write-up:
https: //a13xp0pOv.github.io/2021/02/09/CVE-2021-26708.htm|

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel

https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html

Thanks! Your questions?

alex.popov@linux.com

©al13xp0pOv

http://blog.ptsecurity.com/
Optsecurity

~OSITIVE TECHNOLOGIES

mailto:alex.popov@linux.com
https://twitter.com/a13xp0p0v
http://blog.ptsecurity.com/
https://twitter.com/ptsecurity

