
Four Bytes of Power:
Exploiting CVE-2021-26708 in the Linux Kernel

Alexander Popov

Positive Technologies

April 9, 2021

About Me

Alexander Popov

Linux kernel developer since 2013

Security researcher at

Speaker at conferences:

OffensiveCon, Zer0Con, Linux Security Summit, Still Hacking Anyway,
Open Source Summit, PHDays, Linux Plumbers and others

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 2 / 54

Agenda

1 CVE-2021-26708 overview

◮ Bugs and fixes

◮ Disclosure procedure

2 Exploitation for local privilege escalation on x86_64

◮ Hitting the race condition

◮ Four-byte memory corruption

◮ Long way to arbitrary read/write

3 Exploit demo on Fedora 33 Server bypassing SMEP and SMAP

4 Possible exploit mitigation

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 3 / 54

CVE-2021-26708 Overview

LPE in the Linux kernel

Bug type: race condition

Refers to 5 similar bugs in the virtual socket implementation

Major Linux distros ship CONFIG_VSOCKETS and

CONFIG_VIRTIO_VSOCKETS as a kernel modules

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 4 / 54

Attack Surface

The vulnerable modules are automatically loaded

Just create a socket for the AF_VSOCK domain:

vsock = socket(AF_VSOCK, SOCK_STREAM, 0);

That’s available for unprivileged users

User namespaces are not needed for that

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 5 / 54

Kernel Crash

I used the syzkaller fuzzer with custom modifications

KASAN got a suspicious kernel crash in

virtio_transport_notify_buffer_size()

The fuzzer failed to reproduce this crash

I inspected the source code and developed the reproducer manually

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 6 / 54

Does This Look Intentional?

I found a confusing bug in vsock_stream_setsockopt():

struct sock *sk;

struct vsock_sock *vsk;

const struct vsock_transport *transport;

sk = sock->sk;

vsk = vsock_sk(sk);

transport = vsk->transport;

lock_sock(sk);

Let me look at it...

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 7 / 54

Does This Look Intentional?

I found a confusing bug in vsock_stream_setsockopt():

struct sock *sk;

struct vsock_sock *vsk;

const struct vsock_transport *transport;

sk = sock->sk;

vsk = vsock_sk(sk);

transport = vsk->transport;

/* vsk->transport value may change here! */

lock_sock(sk);

Wait... What?

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 8 / 54

Bugs

vsk->transport may change when the socket lock is not acquired

In that case, the local variable value is out-of-date

That is an obvious race condition bug

I found five similar bugs in net/vmw_vsock/af_vsock.c

Searching the git history helped to understand the reason

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 9 / 54

Fixes

Initially, the transport for a virtual socket was not able to change

The bugs were implicitly introduced in November 2019 when

VSOCK multi-transport support was added

Fixing this vulnerability is trivial:

sk = sock->sk;

vsk = vsock_sk(sk);

- transport = vsk->transport;

lock_sock(sk);

+ transport = vsk->transport;

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 10 / 54

Timeline: Part 1

November 14, 2019 – Bugs were introduced

January 7, 2021 – My custom syzkaller got a crash

January 11, 2021 – I started the investigation

January 30, 2021

◮ My PoC exploit and fixing patch were ready
◮ I sent the crasher and patch to security@kernel.org
◮ Review started

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 11 / 54

Disclosure Procedure (1)

I got very prompt replies from Linus Torvalds and Greg Kroah-Hartman

We concluded on this procedure:

1 sending my patch to LKML in public

2 merging it to the upstream and backporting to the stable trees

3 informing the distros about the security-relevance via linux-distros ML

4 disclosing that at oss-security@lists.openwall.com when distros allow me

The first step is questionable, though

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 12 / 54

Disclosure Procedure (2)

Linus decided to merge my patch without any disclosure embargo

Linus:

“This patch doesn’t look all that different from the kinds of patches we do every day”

I obeyed and proposed that I should send it to LKML in public

Rationale

Anybody can find kernel vulnerability fixes by filtering kernel commits that didn’t

appear on the mailing lists https://arxiv.org/abs/2009.01694

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 13 / 54

https://arxiv.org/abs/2009.01694

Timeline: Part 2

February 2, 2021 – The v2 of my patch was merged into Linus’ tree

February 4, 2021

◮ Greg applied it to the affected stable trees

◮ I informed linux-distros ML that the fixed bugs are exploitable

◮ I asked how much time Linux distros need before my public disclosure

◮ But I got this reply:

If the patch is committed upstream, then the issue is public.

Please send to oss-security immediately.

◮ I made the public announcement: https://seclists.org/oss-sec/2021/q1/107

February 5, 2021 – CVE-2021-26708 is assigned

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 14 / 54

https://seclists.org/oss-sec/2021/q1/107

Pondering over the Disclosure Procedure

The question is rising:

Is this "merge ASAP" procedure compatible with the linux-distros mailing list?

Counter-example: how I reported CVE-2017-2636 to security@kernel.org

Kees Cook and Greg organized a one-week disclosure embargo

Linux distributions in the linux-distros ML integrated my fix in their security

updates in no rush

Security updates were published synchronously when the embargo ended

More info in this article: https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 15 / 54

https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html

CVE-2021-26708

NOW ABOUT THE MEMORY CORRUPTION

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 16 / 54

Provoking the Race Condition

I exploited the race condition in vsock_stream_setsockopt()

Reproducing it requires two threads

The first one calls setsockopt()

setsockopt(vsock, PF_VSOCK, SO_VM_SOCKETS_BUFFER_SIZE,

&size, sizeof(unsigned long));

The second thread should change the virtual socket transport

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 17 / 54

Changing VSOCK Transport

It is performed by reconnecting to the virtual socket:

struct sockaddr_vm addr = {

.svm_family = AF_VSOCK,

};

addr.svm_cid = VMADDR_CID_LOCAL;

connect(vsock, (struct sockaddr *)&addr, sizeof(struct sockaddr_vm));

addr.svm_cid = VMADDR_CID_HYPERVISOR;

connect(vsock, (struct sockaddr *)&addr, sizeof(struct sockaddr_vm));

Meanwhile, vsock_stream_setsockopt() in a parallel thread is

trying to acquire the lock
Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 18 / 54

Race Condition: Full Picture

Thread 1: reconnecting to vsock

vsock_stream_connect() /* VMADDR_CID_LOCAL */

vsock_stream_connect() /* VMADDR_CID_HYPERVISOR */

lock_sock() /* locked successfully */

vsock_assign_transport()

vsock_deassign_transport()

virtio_transport_destruct()

kfree(virtio_vsock_sock)

vsk->transport = NULL

release_sock()

Thread 2: setsockopt() for vsock

vsock_stream_setsockopt()

transport = vsk->transport

lock_sock() /* can’t lock, waiting */

/* finally locked successfully, proceed */

vsock_update_buffer_size()

transport->notify_buffer_size()

virtio_transport_notify_buffer_size()

virtio_vsock_sock->buf_alloc = *val /* UAF */

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 19 / 54

Using Out-of-date Value From a Local Variable

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 20 / 54

Memory Corruption

Write-after-free for virtio_vsock_sock object

The size of this object is 64 bytes

This object lives in kmalloc-64 slab cache

The buf_alloc field has type u32 and resides at offset 40

The value written buf_alloc is controlled by the attacker

Four controlled bytes are written to the freed memory

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 21 / 54

Fuzzing Miracle (1)

syzkaller didn’t manage to reproduce this crash

I had to develop the reproducer manually

But why did the fuzzer fail to do that?

Looking at vsock_update_buffer_size() code gives the answer:

if (val != vsk->buffer_size &&

transport && transport->notify_buffer_size)

transport->notify_buffer_size(vsk, &val);

vsk->buffer_size = val;

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 22 / 54

Fuzzing Miracle (2)

For memory corruption, setsockopt() should be called with different

SO_VM_SOCKETS_BUFFER_SIZE value each time

A fun hack from my first reproducer:

struct timespec tp;

unsigned long size = 0;

clock_gettime(CLOCK_MONOTONIC, &tp);

size = tp.tv_nsec;

setsockopt(vsock, PF_VSOCK, SO_VM_SOCKETS_BUFFER_SIZE,

&size, sizeof(unsigned long));

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 23 / 54

Fuzzing Miracle (3)

Upstream syzkaller doesn’t do things like that

Syscall params are chosen when syzkaller generates fuzzing inputs

Inputs don’t change when the fuzzer executes them on the target

I still don’t completely understand how syzkaller got this crash

syzkaller did some lucky multithreaded magic with vsock buffer size

limits but then failed to reproduce it

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 24 / 54

CVE-2021-26708

NOW ABOUT EXPLOITATION,

STEP BY STEP

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 25 / 54

Exploitation Target

I’ve chosen Fedora 33 Server as the exploitation target

The kernel version: 5.10.11-200.fc33.x86_64

I had a goal to bypass SMEP and SMAP

Bypassing KASLR is included, of course

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 26 / 54

Four Bytes of Power

Write-after-free of a 4-byte controlled value to a 64-byte kernel object at offset 40

That’s quite limited memory corruption

I had a hard time turning it into a real weapon

Here and further I use images of the artifacts from the State Hermitage Museum in Russia. I love this wonderful museum!

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 27 / 54

https://www.hermitagemuseum.org/wps/portal/hermitage?lng=en

Heap Spraying Requirements

I started to work on stable heap spraying

The exploit should perform some userspace activity that makes the

kernel allocate another 64-byte object at the location of freed

virtio_vsock_sock

4-byte write-after-free should corrupt the sprayed object instead of

unused free kernel memory

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 28 / 54

Experimental Heap Spraying

I made quick experimental spraying with add_key syscall

I called add_key several times right after the second connect() to vsock

while a parallel thread finishes the corrupting setsockopt()

ftrace allowed to confirm that the freed virtio_vsock_sock is overwritten

I saw that successful heap spraying was possible

The next step: finding a 64-byte kernel object that can provide a stronger

exploit primitive when it has four corrupted bytes at offset 40

Huh, not so easy!

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 29 / 54

The iovec Technique is Useless Here

I tried iovec technique from the Bad Binder by Maddie Stone and Jann Horn

A carefully corrupted iovec object can be used

for arbitrary read/write

No, I got triple fail with this idea:

1 64-byte iovec is allocated on the kernel stack, not the heap

2 Four bytes at offset 40 overwrite iovec.iov_len, not iovec.iov_base

3 This iovec exploitation trick is dead since the Linux kernel version 4.13,

awesome Al Viro killed it with the commit 09fc68dc66f7597b in June 2017

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 30 / 54

https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html

Searching for a Special Kernel Object

I had exhausting experiments with various kernel objects suitable for heap spraying

I found msgsnd() syscall that creates struct msg_msg in the kernelspace:

/* message header */

struct msg_msg {

struct list_head m_list; /* 0 16 */

long int m_type; /* 16 8 */

size_t m_ts; /* 24 8 */

struct msg_msgseg * next; /* 32 8 */

void * security; /* 40 8 */

};

/* message data follows */

If struct msgbuf in the userspace has 16-byte mtext, the corresponding msg_msg is

created in kmalloc-64 slab cache, just like virtio_vsock_sock!

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 31 / 54

Four Bytes of Power

The 4-byte write-after-free can corrupt the void *security pointer at offset 40:

/* message header */

struct msg_msg {

struct list_head m_list; /* 0 16 */

long int m_type; /* 16 8 */

size_t m_ts; /* 24 8 */

struct msg_msgseg * next; /* 32 8 */

void * security; /* 40 8 */

};

/* message data follows */

Jokingly, I used this security field to break Linux security

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 32 / 54

Arbitrary Free

msg_msg.security points to the kernel data allocated by lsm_msg_msg_alloc()

It is used by SELinux in the case of Fedora

It is freed by security_msg_msg_free() when msg_msg is received

Corrupting 4 least significant bytes

of msg_msg.security provides arbitrary free!

That is a much stronger exploit primitive

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 33 / 54

What to Free?

After achieving arbitrary free I started to think about where to aim it

And here I used the trick from my CVE-2019-18683 exploit:

◮ Second connect() to vsock calls vsock_deassign_transport()

◮ It sets vsk->transport to NULL

◮ That makes the vulnerable setsockopt() hit the kernel warning

◮ It happens in virtio_transport_send_pkt_info() just after UAF

◮ My exploit can parse this kernel warning and extract useful info!

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 34 / 54

https://a13xp0p0v.github.io/2020/02/15/CVE-2019-18683.html

Kernel Warning Full of Secrets

WARNING: CPU: 1 PID: 6739 at net/vmw_vsock/virtio_transport_common.c:34

...

CPU: 1 PID: 6739 Comm: racer Tainted: G W 5.10.11-200.fc33.x86_64 #1

Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014

RIP: 0010:virtio_transport_send_pkt_info+0x14d/0x180 [vmw_vsock_virtio_transport_common]

...

RSP: 0018:ffffc90000d07e10 EFLAGS: 00010246

RAX: 0000000000000000 RBX: ffff888103416ac0 RCX: ffff88811e845b80

RDX: 00000000ffffffff RSI: ffffc90000d07e58 RDI: ffff888103416ac0

RBP: 0000000000000000 R08: 00000000052008af R09: 0000000000000000

R10: 0000000000000126 R11: 0000000000000000 R12: 0000000000000008

R13: ffffc90000d07e58 R14: 0000000000000000 R15: ffff888103416ac0

FS: 00007f2f123d5640(0000) GS:ffff88817bd00000(0000) knlGS:0000000000000000

CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033

CR2: 00007f81ffc2a000 CR3: 000000011db96004 CR4: 0000000000370ee0

Call Trace:

virtio_transport_notify_buffer_size+0x60/0x70 [vmw_vsock_virtio_transport_common]

vsock_update_buffer_size+0x5f/0x70 [vsock]

vsock_stream_setsockopt+0x128/0x270 [vsock]

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 35 / 54

Kernel Infoleak

A quick debugging session with gdb showed that:

◮ RCX contains the kernel address of the freed virtio_vsock_sock
◮ RBX contains the kernel address of vsock_sock

On Fedora, unprivileged users can open and parse /dev/kmsg

If one more warning arrives at the kernel log,

the exploit won one more race

The exploit can parse the kernel log and

get the addresses from the registers

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 36 / 54

Further Exploitation Plan

My further exploitation plan was to use arbitrary free for use-after-free:

1 Free some object at the address that leaked in the kernel warning

2 Perform heap spraying to overwrite that object with controlled data

3 Get more power using the corrupted object

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 37 / 54

The Target for Arbitrary Free

Arbitrary free for vsock_sock address (from RBX) is useless

It lives in a dedicated slab cache where I can’t do heap spraying

So I invented how to exploit use-after-free on msg_msg (from RCX)

For overwriting msg_msg I used wonderful setxattr() &

userfaultfd() heap spraying technique by Vitaly Nikolenko

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 38 / 54

Arbitrary Read with msg_msg: Part 1

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 39 / 54

Arbitrary Read with msg_msg: Part 2

Receiving this crafted msg_msg manipulates the System V message queue

That breaks the kernel because the msg_msg.m_list pointer is invalid

msgrcv() documentation for the win!

MSG_COPY flag allows fetching a copy of the message nondestructively

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 40 / 54

Exploiting Arbitrary Read (1)

1. Get the kernel address of a good msg_msg

win the race on a virtual socket

call spraying msgsnd() after the memory corruption

parse /dev/kmsg and get the kernel address of this good msg_msg from RCX

also, save the kernel address of vsock_sock from RBX

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 41 / 54

Exploiting Arbitrary Read (2)

2. Execute arbitrary free against good msg_msg using a corrupted msg_msg

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 42 / 54

Exploiting Arbitrary Read (3)

3. Overwrite good msg_msg with controlled data using setxattr() & userfaultfd()

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 43 / 54

Exploiting Arbitrary Read (4)

4. Read vsock_sock to the userspace using msgrcv() for the overwritten msg_msg

ret = msgrcv(msg_locations[0].msq_id, kmem, ARB_READ_SZ, 0,

IPC_NOWAIT | MSG_COPY | MSG_NOERROR);

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 44 / 54

Sorting the Loot

That’s what I found inside the vsock_sock kernel object:

1 Plenty of pointers to objects from dedicated slab caches

2 struct mem_cgroup *sk_memcg pointer at offset 664
◮ mem_cgroup objects live in the kmalloc-4k slab cache

◮ I tried to call kfree() for it and the kernel panicked instantly

3 const struct cred *owner pointer at offset 840
◮ It points to the credentials that I want to overwrite for privilege escalation

◮ It’s a pity that cred lives in dedicated cred_jar slab cache

4 void (*sk_write_space)(struct sock *) function pointer at offset 688
◮ It is set to the address of sock_def_write_space() kernel function

◮ That can be used for calculating the KASLR offset

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 45 / 54

Good Old Trick with sk_buff

I used it in my exploit for CVE-2017-2636 in the Linux kernel

I turned double free for a kmalloc-8192 object into use-after-free on sk_buff

I decided to repeat that trick

◮ A network-related buffer in the kernel is represented by sk_buff

◮ This object has skb_shared_info with destructor_arg

◮ Creating a 2800-byte network packet in the userspace will make

skb_shared_info be allocated in the kmalloc-4k slab cache

◮ That’s where mem_cgroup objects live as well!

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 46 / 54

https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html

Use-after-free on sk_buff

1 Create one client socket and 32 server sockets (for AF_INET,

SOCK_DGRAM, IPPROTO_UDP)

2 Send a 2800-byte buffer filled with 0x42 to each server socket using sendto()

3 Perform arbitrary read for vsock_sock (described earlier)

4 Calculate possible sk_buff kernel address as sk_memcg plus 4096 (the next

element in kmalloc-4k)

5 Perform arbitrary read for this possible sk_buff address

6 If 0x42 bytes are found, perform arbitrary free against the sk_buff

7 Otherwise, add 4096 to the possible sk_buff address and go to step 5

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 47 / 54

The Payload for Overwriting skb_shared_info

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 48 / 54

Control Flow Hijack

I didn’t manage to find a stack pivoting gadget in vmlinuz-5.10.11-200.fc33.x86_64

that can work in my restrictions

So I performed arbitrary write in one shot

SMEP and SMAP protection is bypassed!

/*

* A single ROP gadget for arbitrary write:

* mov rdx, qword ptr [rdi + 8] ; mov qword ptr [rdx + rcx*8], rsi ; ret

* Here rdi stores uinfo_p address, rcx is 0, rsi is 1

*/

uinfo_p->callback = ARBITRARY_WRITE_GADGET + kaslr_offset;

uinfo_p->desc = owner_cred + CRED_EUID_EGID_OFFSET; /* value for "qword ptr [rdi + 8]" */

uinfo_p->desc = uinfo_p->desc - 1; /* rsi value 1 should not get into euid */

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 49 / 54

Arbitrary Write Using skb_shared_info

This weapon is used twice to get root privileges:

1 Write zeros to effective uid and gid

2 Write zeros to uid and gid

Later I managed to perform stack pivoting using a JOP-chain

And I managed to bypass the Linux Kernel Runtime Guard (LKRG)

I’m preparing this material for publishing, stay tuned!

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 50 / 54

Demo Time

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 51 / 54

Possible Exploit Mitigation

Exploiting this vulnerability is impossible with the Linux kernel heap quarantine

◮ Because this memory corruption happens very shortly after the race condition
◮ See the article about my SLAB_QUARANTINE prototype

Against kernel module autoloading by unprivileged users – grsecurity MODHARDEN

Against userfaultfd() abuse – setting /proc/sys/vm/unprivileged_userfaultfd to 0

Against infoleak via kernel log – setting kernel.dmesg_restrict sysctl to 1

Against calling my ROP gadget –

Control Flow Integrity (see the technologies on my Linux Kernel Defence Map)

Against use-after-free (hopefully in the future) –

ARM Memory Tagging Extension (MTE) support for the kernel, on ARM

[rumors] Against heap spraying –

grsecurity Wunderwaffe called AUTOSLAB (we don’t know much about it)

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 52 / 54

https://a13xp0p0v.github.io/2020/11/30/slab-quarantine.html
https://github.com/a13xp0p0v/linux-kernel-defence-map

Conclusion

Investigating and fixing CVE-2021-26708,

developing the PoC exploit,

and preparing this talk

was a big deal for me

I hope you enjoyed it!

I managed to turn the race condition with a very limited memory corruption

into arbitrary read/write for the Linux kernel memory

I’ve published a detailed write-up:
https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html

Alexander Popov Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux Kernel 53 / 54

https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html

Thanks! Your questions?

alex.popov@linux.com
@a13xp0p0v

http://blog.ptsecurity.com/
@ptsecurity

mailto:alex.popov@linux.com
https://twitter.com/a13xp0p0v
http://blog.ptsecurity.com/
https://twitter.com/ptsecurity

