
STACKLEAK: A Long Way to the Linux Kernel Mainline

Alexander Popov

Positive Technologies

August 27, 2018

About Me

Alexander Popov

Linux kernel developer

Security researcher at

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 2 / 37

Agenda

STACKLEAK overview, credit to grsecurity/PaX

My role

STACKLEAK as a security feature

I A�ected kernel vulnerabilities
I Protection mechanisms
I Performance penalty

The way to the Mainline

I Timeline and the current state
I Changes from the original version
I Interactions with Linus and subsystem maintainers

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 3 / 37

STACKLEAK Overview

Awesome Linux kernel security feature

Developed by PaX Team (kudos!)

PAX_MEMORY_STACKLEAK in grsecurity/PaX patch

grsecurity/PaX patch is not freely available now

The last public version is for 4.9 kernel (April 2017)

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 4 / 37

My Goal

Bring STACKLEAK into the Linux kernel mainline

Thanks to Positive Technologies for allowing me

to spend part of my working time on it!

Thanks to my wife and kids for allowing me

to spend plenty of my free time on it!

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 5 / 37

My Tactics

Extract STACKLEAK from grsecurity/PaX patch�
�

�
$ wc -l ../grsecurity-3.1-4.9.24-201704252333.patch

225976 ../grsecurity-3.1-4.9.24-201704252333.patch

Carefully learn it bit by bit

Send to LKML, get feedback, improve, repeat ...

for more than a year: 15 versions of the patch series

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 6 / 37

My Tactics

Extract STACKLEAK from grsecurity/PaX patch�
�

�
$ wc -l ../grsecurity-3.1-4.9.24-201704252333.patch

225976 ../grsecurity-3.1-4.9.24-201704252333.patch

Carefully learn it bit by bit

Send to LKML, get feedback, improve, repeat ...

for more than a year: 15 versions of the patch series

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 6 / 37

STACKLEAK Security Features

Now about STACKLEAK security features

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 7 / 37

Linux Kernel Defence Map: Whole Picture

https://github.com/a13xp0p0v/linux-kernel-defence-map

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 8 / 37

https://github.com/a13xp0p0v/linux-kernel-defence-map

Linux Kernel Defence Map: STACKLEAK Part

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 9 / 37

STACKLEAK Security Features (1)

Erases the kernel stack at the end of syscalls

Reduces the information that can be revealed through

some* kernel stack leak bugs

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 10 / 37

Kernel Stack Leak Bug Example

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 11 / 37

STACKLEAK Mitigation of Such Bugs

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 12 / 37

STACKLEAK Security Features (2)

Blocks some* uninitialized kernel stack variable attacks

Nice examples: CVE-2010-2963, CVE-2017-17712

See cool write-up by Kees Cook:
https://out�ux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 13 / 37

https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/

Uninitialized Stack Variable Attack

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 14 / 37

Mitigation of Uninitialized Stack Variable Attacks

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 15 / 37

STACKLEAK Security Features (3)

Improves runtime detection of kernel stack depth over�ow

(blocks Stack Clash attack)

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 16 / 37

Interrelation of Security Mechanisms

In mainline kernel STACKLEAK would be e�ective against kernel
stack depth over�ow only in combination with:

CONFIG_THREAD_INFO_IN_TASK

CONFIG_VMAP_STACK (kudos to Andy Lutomirski)

Viktor Vasnetsov, Bogatyrs (1898)

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 17 / 37

Stack Clash Attack for the Kernel Stack

Idea by Gael Delalleau: "Large memory management vulnerabilities" (2005)
Revisited in "The Stack Clash" by Qualys Research Team (2017)

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 18 / 37

https://cansecwest.com/core05/memory_vulns_delalleau.pdf
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt

STACKLEAK vs Stack Clash

Read about STACKLEAK vs Stack Clash on grsecurity blog:
https://grsecurity.net/an_ancient_kernel_hole_is_not_closed.php

This code runs before each alloca() call:

if (size >= stack_left) {

#if !defined(CONFIG_VMAP_STACK) && defined(CONFIG_SCHED_STACK_END_CHECK)

panic("alloca() over the kernel stack boundary\n");

#else

BUG();

#endif

}

Hated by Linus

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 19 / 37

https://grsecurity.net/an_ancient_kernel_hole_is_not_closed.php

STACKLEAK vs Stack Clash

Read about STACKLEAK vs Stack Clash on grsecurity blog:
https://grsecurity.net/an_ancient_kernel_hole_is_not_closed.php

This code runs before each alloca() call:

if (size >= stack_left) {

#if !defined(CONFIG_VMAP_STACK) && defined(CONFIG_SCHED_STACK_END_CHECK)

panic("alloca() over the kernel stack boundary\n");

#else

BUG();

#endif

}

Hated by Linus

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 19 / 37

https://grsecurity.net/an_ancient_kernel_hole_is_not_closed.php

Cool, But What's the Price? (1)

Brief performance testing on x86_64
Hardware: Intel Core i7-4770, 16 GB RAM
Test 1, attractive: building the Linux kernel with x86_64 defcon�g

$ time make

Result on 4.18:

real 12m14.124s

user 11m17.565s

sys 1m6.943s

Result on 4.18+stackleak:

real 12m20.335s (+0.85%)

user 11m23.283s

sys 1m8.221s

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 20 / 37

Cool, But What's the Price? (2)

Brief performance testing on x86_64

Hardware: Intel Core i7-4770, 16 GB RAM

Test 2, UNattractive:

$ hackbench -s 4096 -l 2000 -g 15 -f 25 -P

Average on 4.18: 9.08s

Average on 4.18+stackleak: 9.47s (+4.3%)

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 21 / 37

Cool, But What's the Price? (3)

Conclusions

1. The performance penalty varies for di�erent workloads

2. Test STACKLEAK on your expected workload before deploying
in production (STACKLEAK_METRICS may help)

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 22 / 37

Before Talking About the Upstreaming Process

The STACKLEAK feature consists of:

the code erasing the used part of the kernel thread stack

the GCC plugin performing compile-time instrumentation for:

I tracking the lowest border of the kernel stack

I alloca() check

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 23 / 37

STACKLEAK Upstreaming Timeline

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 24 / 37

STACKLEAK: Changes from the Original Version (1)

Bugs �xed in:

gcc plugin

assertions in kernel stack tracking and alloca() check

points of kernel stack erasing (found missing)

Plenty of refactoring:

extracted the common part for easy porting to new platforms
(includes rewriting of the stack erasing in C)

got rid of hardcoded magic numbers, documented the code

polished the codestyle until Ingo Molnar was satis�ed (phew!)

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 25 / 37

STACKLEAK: Changes from the Original Version (2)

New functionality:

x86_64 trampoline stack support

tests for STACKLEAK (together with Tycho Andersen)

arm64 support (by Laura Abbott)

gcc-8 support in the plugin (together with Laura Abbott)

New functionality requested by Ingo Molnar:

CONFIG_STACKLEAK_METRICS for performance evaluations

CONFIG_STACKLEAK_RUNTIME_DISABLE (he forced me)

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 26 / 37

STACKLEAK: Changes from the Original Version (3)

Dropped functionality:

assertions in stack tracking (erroneous)

stack erasing after ptrace/seccomp/auditing (hated by Linus)

alloca() checking (hated by Linus):

I BUG_ON() is now prohibited
I all VLA (Variable Length Arrays) will be removed instead

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 27 / 37

STACKLEAK: Changes from the Original Version (4)

Brad Spengler

How security functionality will be properly implemented and
maintained upstream if the maintainers don't understand what the
code they've copy+pasted from grsecurity does in the �rst place

https://grsecurity.net/an_ancient_kernel_hole_is_not_closed.php

That is not applicable to STACKLEAK upstreaming e�orts

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 28 / 37

https://grsecurity.net/an_ancient_kernel_hole_is_not_closed.php

What Does �Burnt by Linus� Mean?

Strong language, even swearing (example)

Technical objections are mixed with it

NAKing without looking at the patches (example)

Simply ignoring

Maybe he is irritated with kernel hardening by default?

I love the Linux kernel, but THAT kills my motivation

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 29 / 37

https://lkml.org/lkml/2018/8/15/450
https://lore.kernel.org/lkml/CA+55aFxEAYyrUkApo-dtZvxcYbvWBZJpUytjbm7e2wruTvbYjQ@mail.gmail.com/

What Does �Burnt by Linus� Mean?

Strong language, even swearing (example)

Technical objections are mixed with it

NAKing without looking at the patches (example)

Simply ignoring

Maybe he is irritated with kernel hardening by default?

I love the Linux kernel, but THAT kills my motivation

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 29 / 37

https://lkml.org/lkml/2018/8/15/450
https://lore.kernel.org/lkml/CA+55aFxEAYyrUkApo-dtZvxcYbvWBZJpUytjbm7e2wruTvbYjQ@mail.gmail.com/

Sisyphus or Phoenix?

Will Linus �nally merge STACKLEAK?

No? Yes?

by Johann Vogel by Friedrich Justin Bertuch

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 30 / 37

Closing Thoughts

WE are the Linux Kernel Community

WE are responsible for servers, laptops, phones, PLCs, laser

cutters, and other crazy things running GNU/Linux

Let's put MORE e�ort into Linux Kernel Security � and

we will not be ignored!

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 31 / 37

Thanks! Questions?

alex.popov@linux.com
@a13xp0p0v

http://blog.ptsecurity.com/
@ptsecurity

mailto:alex.popov@linux.com
https://twitter.com/a13xp0p0v
http://blog.ptsecurity.com/
https://twitter.com/ptsecurity

Important Limitation

* STACKLEAK doesn't help against such attacks

during a single syscall

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 33 / 37

Erasing the Kernel Stack (1)

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 34 / 37

Erasing the Kernel Stack (2)

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 35 / 37

Kernel Compile-Time Instrumentation

Is done by STACKLEAK GCC plugin

Inserts stackleak_track_stack() call for functions that:

I have a big stack frame

I call alloca() (have variable length arrays)

Inserts stackleak_check_alloca() call before alloca()**

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 36 / 37

VLA Removal

** In v15 Stack Clash detection is completely dropped, since:

VLA removal is almost �nished

global '-Wvla' �ag should arrive soon

https://patchwork.kernel.org/patch/10489873

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline 37 / 37

https://patchwork.kernel.org/patch/10489873

