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About Me

o Alexander Popov

o Linux kernel developer
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o STACKLEAK overview, credit to grsecurity/PaX
e My role
o STACKLEAK as a security feature

» Affected kernel vulnerabilities

» Protection mechanisms
» Performance penalty

e The way to the Mainline

» Timeline and the current state
» Changes from the original version
» Interactions with Linus and subsystem maintainers
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STACKLEAK Overview

o Awesome Linux kernel security feature

o Developed by PaX Team (kudos!)

o PAX_MEMORY_STACKLEAK in grsecurity/PaX patch
o grsecurity/PaX patch is not freely available now

o The last public version is for 4.9 kernel (April 2017)
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Bring STACKLEAK into the Linux kernel mainline |

Thanks to Positive Technologies for allowing me
to spend part of my working time on it!

Thanks to my wife and kids for allowing me
to spend plenty of my free time on it!
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My Tactics

o Extract STACKLEAK from grsecurity/PaX patch
[ $ wc -1 ../grsecurity-3.1-4.9.24-201704252333.patch }

225976 ../grsecurity-3.1-4.9.24-201704252333.patch

o Carefully learn it bit by bit
o Send to LKML, get feedback, improve, repeat ...
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My Tactics

o Extract STACKLEAK from grsecurity/PaX patch

$ we -1 ../grsecurity-3.1-4.9.24-201704252333.patch
225976 ../grsecurity-3.1-4.9.24-201704252333.patch

o Carefully learn it bit by bit
o Send to LKML, get feedback, improve, repeat ...

for more than a year: 15 versions of the patch series
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STACKLEAK Security Features

Now about STACKLEAK security features
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Linux Kernel Defence Map: Whole Picture

https://github.com /a13xp0p0v/linux-kernel-defence-map

I
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https://github.com/a13xp0p0v/linux-kernel-defence-map

Linux Kernel Defence Map: STACKLEAK Part

/-b Stack Depth Overflow (CWE-674,7)
- . PAX_MEMORY_STACKLEAK —» Uninitialized Vars (CWE-I57) 4—.

\. Info Exposure (CWE-200)

Legend:

- Commercial Defences Vulnerabilities -
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STACKLEAK Security Features (1)

o Erases the kernel stack at the end of syscalls

o Reduces the information that can be revealed through
some™ kernel stack leak bugs

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline



Kernel Stack Leak Bug Example
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STACKLEAK Mitigation of Such Bugs

kernel thread stack

invoke syscall #1 “OXBEEF security-
-OXBEEF sensitive
-OXxBEEF data
-OxBEEF
stackleak_erase() XBEEF erased
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STACKLEAK_POISO

kernel thread stack

invoke syscall #2
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return to userspace
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STACKLEAK Security Features (2)

o Blocks some* uninitialized kernel stack variable attacks
o Nice examples: CVE-2010-2963, CVE-2017-17712

o See cool write-up by Kees Cook:
https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/
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Uninitialized Stack Variable Attack
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Mitigation of Uninitialized Stack Variable Attacks

Alexander Popov (Posi
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STACKLEAK Security Features (3)

Improves runtime detection of kernel stack depth overflow

(blocks Stack Clash attack)
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Interrelation of Security Mechanisms

In mainline kernel STACKLEAK would be effective against kernel
stack depth overflow only in combination with:

o CONFIG_THREAD_INFO_IN_TASK
o CONFIG_VMAP_STACK (kudos to Andy Lutomirski)

T > \

Viktor Vasnetsov, Bogatyrs (1898)
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Stack Clash Attack for the Kernel Stack

Idea by Gael Delalleau: "Large memory management vulnerabilities" (2005)

Revisited in "The Stack Clash" by Qualys Research Team (2017)

thread stack top

old stack pointerf

thread stack bottom|

guard page

another thread stack 3 l

or a heap object
S

alloca()-ted
memory

new stack pointer
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https://cansecwest.com/core05/memory_vulns_delalleau.pdf
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt

STACKLEAK vs Stack Clash

e Read about STACKLEAK vs Stack Clash on grsecurity blog:

https://grsecurity.net/an ancient kernel hole is not closed.php

o This code runs before each alloca() call:

if (size >= stack_left) {
#if !'defined (CONFIG_VMAP_STACK) && defined(CONFIG_SCHED_STACK_END_CHECK)
panic("alloca() over the kernel stack boundary\n");
#else
BUGQ);
#endif
}
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STACKLEAK vs Stack Clash

e Read about STACKLEAK vs Stack Clash on grsecurity blog:

https://grsecurity.net/an ancient kernel hole is not closed.php

o This code runs before each alloca() call:

if (size >= stack_left) {
#if !'defined (CONFIG_VMAP_STACK) && defined(CONFIG_SCHED_STACK_END_CHECK)
panic("alloca() over the kernel stack boundary\n");
#else
BUGQ);
#endif
}

e Hated by Linus
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Cool, But What's the Price? (1)

Brief performance testing on x86 64
Hardware: Intel Core i7-4770, 16 GB RAM

Test 1, attractive: building the Linux kernel with x86 64 defconfig
$ time make

Result on 4.18:

real 12mi14.124s
user 11ml17.565s
sys 1m6.943s

Result on 4.18+stackleak:

real 12m20.335s (+0.85%)
user 11m23.283s
sys 1m8.221s
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Cool, But What's the Price? (2)

Brief performance testing on x86 64

Hardware: Intel Core i7-4770, 16 GB RAM
Test 2, UNattractive:

$ hackbench -s 4096 -1 2000 -g 15 -f 25 -P

Average on 4.18: 9.08s

Average on 4.18+stackleak: 9.47s (+4.3})
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Cool, But What's the Price? (3)

1. The performance penalty varies for different workloads

2. Test STACKLEAK on your expected workload before deploying
in production (STACKLEAK_METRICS may help)
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Before Talking About the Upstreaming Process

The STACKLEAK feature consists of:

o the code erasing the used part of the kernel thread stack

o the GCC plugin performing compile-time instrumentation for:

> tracking the lowest border of the kernel stack

- allocaO)—cheeck
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STACKLEAK Upstreaming Timeline

"v15 Sisyphus edition" August 2018

(according to Brad Spengler)
v14

v13 Burnt by Linus (2nd time)

vll
"Stockholm Syndrome~W"~WSTACKLEAK patch series"

(according to Brad Spengler) vo

v8 Burnt by Linus (1st time), VLA cleanup starts

Rebasing onto PTI, Meltdown is published

Stack Clash is published

April 2017
My decision to work on STACKLEAK

grsecurity: NO MORE public patches
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STACKLEAK: Changes from the Original Version (1)

Bugs fixed in:
e gcc plugin
e assertions in kernel stack tracking and alloca() check

o points of kernel stack erasing (found missing)
Plenty of refactoring:

e extracted the common part for easy porting to new platforms
(includes rewriting of the stack erasing in C)
e got rid of hardcoded magic numbers, documented the code

o polished the codestyle until Ingo Molnar was satisfied (phew!)
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STACKLEAK: Changes from the Original Version (2)

New functionality:

e x86_ 64 trampoline stack support

o tests for STACKLEAK (together with Tycho Andersen)

o arm64 support (by Laura Abbott)

o gce-8 support in the plugin (together with Laura Abbott)

New functionality requested by Ingo Molnar:

o CONFIG_STACKLEAK_METRICS for performance evaluations
o CONFIG_STACKLEAK_RUNTIME_DISABLE (he forced me)
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STACKLEAK: Changes from the Original Version (3)

Dropped functionality:
e assertions in stack tracking (erroneous)
o stack erasing after ptrace/seccomp/auditing (hated by Linus)
o alloca() checking (hated by Linus):

» BUG_ON () is now prohibited
> all VLA (Variable Length Arrays) will be removed instead
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STACKLEAK: Changes from the Original Version (4)

Brad Spengler

How security functionality will be properly implemented and
maintained upstream if the maintainers don’t understand what the
code they've copy+pasted from grsecurity does in the first place

https://grsecurity.net/an _ancient kernel hole is not closed.php

That is not applicable to STACKLEAK upstreaming efforts
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What Does “Burnt by Linus” Mean?

o Strong language, even swearing (example)

o Technical objections are mixed with it

o NAKing without looking at the patches (example)
o Simply ignoring

o Maybe he is irritated with kernel hardening by default?
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https://lkml.org/lkml/2018/8/15/450
https://lore.kernel.org/lkml/CA+55aFxEAYyrUkApo-dtZvxcYbvWBZJpUytjbm7e2wruTvbYjQ@mail.gmail.com/

What Does “Burnt by Linus” Mean?

o Strong language, even swearing (example)

o Technical objections are mixed with it

o NAKing without looking at the patches (example)
o Simply ignoring

o Maybe he is irritated with kernel hardening by default?

o | love the Linux kernel, but THAT kills my motivation
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Sisyphus or Phoenix?

Will Linus finally merge STACKLEAK?

Yes?

by Johann Vogel by Friedrich Justin Bertuch
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Closing Thoughts

o WE are the Linux Kernel Community

o WE are responsible for servers, laptops, phones, PLCs, laser
cutters, and other crazy things running GNU /Linux

o Let's put MORE effort into Linux Kernel Security — and
we will not be ignored!
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Thanks! Questions?

alex.popov@linux.com
©a13xp0p0v

http://blog.ptsecurity.com/
Qptsecurity



mailto:alex.popov@linux.com
https://twitter.com/a13xp0p0v
http://blog.ptsecurity.com/
https://twitter.com/ptsecurity

Important Limitation

* STACKLEAK doesn't help against such attacks

during a single syscall
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Erasing the Kernel Stack (1)

stackleak_erase() on x86_64, if called from trampoline stack

1. search for (16+1) STACKLEAK_POISON values in a row

Legend:

thread stack top|

|:| STACKLEAK_POISON

lowest_stack T
1 |:| any other value

. reserved

thread stack pbottom - - -
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Erasing the Kernel Stack (2)

stackleak_erase() on x86_64, if called from trampoline stack

2. write STACKLEAK_POISON values up to the stack top
3. update lowest_stack

Legend:

thread stack top
new lowest_stack A
lowest_stack

|:| STACKLEAK_POISON

|:| any other value
. reserved

found point

thread stack bottom
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Kernel Compile-Time Instrumentation

o Is done by STACKLEAK GCC plugin
e Inserts stackleak_track_stack() call for functions that:

» have a big stack frame

» call alloca() (have variable length arrays)

o Insertsstackleak-check-allocal)—callbefore alloca () **
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VLA Removal

** In v15 Stack Clash detection is completely dropped, since:

e VLA removal is almost finished

o global '-“Wvla" flag should arrive soon
https://patchwork.kernel.org/patch /10489873
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