STACKLEAK: A Long Way to the Linux Kernel Mainline

Alexander Popov
Positive Technologies

August 27, 2018

LINUX
\/ §U Ml'IJTI:u.rY

About Me

o Alexander Popov

o Linux kernel developer

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

o STACKLEAK overview, credit to grsecurity/PaX
e My role
o STACKLEAK as a security feature

» Affected kernel vulnerabilities

» Protection mechanisms
» Performance penalty

e The way to the Mainline

» Timeline and the current state
» Changes from the original version
» Interactions with Linus and subsystem maintainers

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

STACKLEAK Overview

o Awesome Linux kernel security feature

o Developed by PaX Team (kudos!)

o PAX_MEMORY_STACKLEAK in grsecurity/PaX patch
o grsecurity/PaX patch is not freely available now

o The last public version is for 4.9 kernel (April 2017)

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

Bring STACKLEAK into the Linux kernel mainline |

Thanks to Positive Technologies for allowing me
to spend part of my working time on it!

Thanks to my wife and kids for allowing me
to spend plenty of my free time on it!

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

My Tactics

o Extract STACKLEAK from grsecurity/PaX patch
[$ wc -1 ../grsecurity-3.1-4.9.24-201704252333.patch }

225976 ../grsecurity-3.1-4.9.24-201704252333.patch

o Carefully learn it bit by bit
o Send to LKML, get feedback, improve, repeat ...

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

My Tactics

o Extract STACKLEAK from grsecurity/PaX patch

$ we -1 ../grsecurity-3.1-4.9.24-201704252333.patch
225976 ../grsecurity-3.1-4.9.24-201704252333.patch

o Carefully learn it bit by bit
o Send to LKML, get feedback, improve, repeat ...

for more than a year: 15 versions of the patch series

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

STACKLEAK Security Features

Now about STACKLEAK security features

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

Linux Kernel Defence Map: Whole Picture

https://github.com /a13xp0p0v/linux-kernel-defence-map

I

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

https://github.com/a13xp0p0v/linux-kernel-defence-map

Linux Kernel Defence Map: STACKLEAK Part

/-b Stack Depth Overflow (CWE-674,7)
- . PAX_MEMORY_STACKLEAK —» Uninitialized Vars (CWE-I57) 4—.

\. Info Exposure (CWE-200)

Legend:

- Commercial Defences Vulnerabilities -

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

STACKLEAK Security Features (1)

o Erases the kernel stack at the end of syscalls

o Reduces the information that can be revealed through
some™ kernel stack leak bugs

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

Kernel Stack Leak Bug Example

USERSPACE

_kernel thread stack

invoke syscall #1

security-
sensitive
data

5 |5 | > [>

|~~~

o

kernel thread stack

invoke syscall #2

|
T
|
|
|
H return to userspace
|
1
|
r
|
|

now in userspace ng
memory, profit! t X:
o;};lp copy.fo_pserl) 0x1337 } not
0x42 0x1337 initialized
0x1337 0x4
0x1337 return to userspace
0x43

Alexander Popov (Positive Technologies) STACKLEAK: A g Way to the Linux Kernel Mainli

STACKLEAK Mitigation of Such Bugs

kernel thread stack

invoke syscall #1 “OXBEEF security-
-OXBEEF sensitive
-OXxBEEF data
-OxBEEF
stackleak_erase() XBEEF erased

return to userspace j

STACKLEAK_POISO

kernel thread stack

invoke syscall #2

A s I Y o S s
2

now in userspace 0x41
memory, useless copy_to_user() % not
-OXBEEF }initialized
0x43

return to userspace

Alexander Popov (Positive Technologies) Way to the Linux Kernel Mai

STACKLEAK Security Features (2)

o Blocks some* uninitialized kernel stack variable attacks
o Nice examples: CVE-2010-2963, CVE-2017-17712

o See cool write-up by Kees Cook:
https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/

Uninitialized Stack Variable Attack

USERSPACE

payload #1 prepared
in userspace

.

invoke syscall #1

arget_addr

target_addr copied
| copy_from_user() target_addr from
' arget_addr |) userspace

return to userspace

_kernel thread stack

payload #2 prepared not
in userspace invoke syscall #2 initialized
|
1 0x42
r arget_a
! copy_from_user() 0x43
I

arbitrary write

payload delivered
to kernelspace

‘ ‘ return to userspace

invoke syscall #3

~ “trigger the payload -

Alexander Popov (Positive Technologies) STACKLEAK: A g Way to the Linux Kernel Mainli

Mitigation of Uninitialized Stack Variable Attacks

Alexander Popov (Posi

USERSPACE

payload #1 prepared
in userspace

arget_a

arget_addr

H invoke syscall #1
T

payload #2 prepared
in userspace

ive Technologies)

\ copy_from_user()
! stackleak_erase()

!

return to userspace

STACKLEAK

invoke syscall #2

|
_POISON
|
1
1
|
1

copy_from_user()

I_I return to userspace

kernel thread stack

-OXBEEF

kernel thread stack

0x42
-OXBEEF
0x43

OXBEEF payload #1
-OXBEEF is erased

not
initialized

points to unused
hole in virtual
memory

Way to the Linux Kernel Mai

STACKLEAK Security Features (3)

Improves runtime detection of kernel stack depth overflow

(blocks Stack Clash attack)

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

Interrelation of Security Mechanisms

In mainline kernel STACKLEAK would be effective against kernel
stack depth overflow only in combination with:

o CONFIG_THREAD_INFO_IN_TASK
o CONFIG_VMAP_STACK (kudos to Andy Lutomirski)

T > \

Viktor Vasnetsov, Bogatyrs (1898)

Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

Stack Clash Attack for the Kernel Stack

Idea by Gael Delalleau: "Large memory management vulnerabilities" (2005)

Revisited in "The Stack Clash" by Qualys Research Team (2017)

thread stack top

old stack pointerf

thread stack bottom|

guard page

another thread stack 3 l

or a heap object
S

alloca()-ted
memory

new stack pointer

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

https://cansecwest.com/core05/memory_vulns_delalleau.pdf
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt

STACKLEAK vs Stack Clash

e Read about STACKLEAK vs Stack Clash on grsecurity blog:

https://grsecurity.net/an ancient kernel hole is not closed.php

o This code runs before each alloca() call:

if (size >= stack_left) {
#if !'defined (CONFIG_VMAP_STACK) && defined(CONFIG_SCHED_STACK_END_CHECK)
panic("alloca() over the kernel stack boundary\n");
#else
BUGQ);
#endif
}

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

https://grsecurity.net/an_ancient_kernel_hole_is_not_closed.php

STACKLEAK vs Stack Clash

e Read about STACKLEAK vs Stack Clash on grsecurity blog:

https://grsecurity.net/an ancient kernel hole is not closed.php

o This code runs before each alloca() call:

if (size >= stack_left) {
#if !'defined (CONFIG_VMAP_STACK) && defined(CONFIG_SCHED_STACK_END_CHECK)
panic("alloca() over the kernel stack boundary\n");
#else
BUGQ);
#endif
}

e Hated by Linus

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

https://grsecurity.net/an_ancient_kernel_hole_is_not_closed.php

Cool, But What's the Price? (1)

Brief performance testing on x86 64
Hardware: Intel Core i7-4770, 16 GB RAM

Test 1, attractive: building the Linux kernel with x86 64 defconfig
$ time make

Result on 4.18:

real 12mi14.124s
user 11ml17.565s
sys 1m6.943s

Result on 4.18+stackleak:

real 12m20.335s (+0.85%)
user 11m23.283s
sys 1m8.221s

Alexander Popov (Positive Technologies)

STACKLEAK: A Long Way to the Linux Kernel Mainline

Cool, But What's the Price? (2)

Brief performance testing on x86 64

Hardware: Intel Core i7-4770, 16 GB RAM
Test 2, UNattractive:

$ hackbench -s 4096 -1 2000 -g 15 -f 25 -P

Average on 4.18: 9.08s

Average on 4.18+stackleak: 9.47s (+4.3})

Alexander Popov (Positive Technologies)

STACKLEAK: A Long Way to the Linux Kernel Mainline

Cool, But What's the Price? (3)

1. The performance penalty varies for different workloads

2. Test STACKLEAK on your expected workload before deploying
in production (STACKLEAK_METRICS may help)

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

Before Talking About the Upstreaming Process

The STACKLEAK feature consists of:

o the code erasing the used part of the kernel thread stack

o the GCC plugin performing compile-time instrumentation for:

> tracking the lowest border of the kernel stack

- allocaO)—cheeck

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

STACKLEAK Upstreaming Timeline

"v15 Sisyphus edition" August 2018

(according to Brad Spengler)
v14

v13 Burnt by Linus (2nd time)

vll
"Stockholm Syndrome~W"~WSTACKLEAK patch series"

(according to Brad Spengler) vo

v8 Burnt by Linus (1st time), VLA cleanup starts

Rebasing onto PTI, Meltdown is published

Stack Clash is published

April 2017
My decision to work on STACKLEAK

grsecurity: NO MORE public patches

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

STACKLEAK: Changes from the Original Version (1)

Bugs fixed in:
e gcc plugin
e assertions in kernel stack tracking and alloca() check

o points of kernel stack erasing (found missing)
Plenty of refactoring:

e extracted the common part for easy porting to new platforms
(includes rewriting of the stack erasing in C)
e got rid of hardcoded magic numbers, documented the code

o polished the codestyle until Ingo Molnar was satisfied (phew!)

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

STACKLEAK: Changes from the Original Version (2)

New functionality:

e x86_ 64 trampoline stack support

o tests for STACKLEAK (together with Tycho Andersen)

o arm64 support (by Laura Abbott)

o gce-8 support in the plugin (together with Laura Abbott)

New functionality requested by Ingo Molnar:

o CONFIG_STACKLEAK_METRICS for performance evaluations
o CONFIG_STACKLEAK_RUNTIME_DISABLE (he forced me)

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

STACKLEAK: Changes from the Original Version (3)

Dropped functionality:
e assertions in stack tracking (erroneous)
o stack erasing after ptrace/seccomp/auditing (hated by Linus)
o alloca() checking (hated by Linus):

» BUG_ON () is now prohibited
> all VLA (Variable Length Arrays) will be removed instead

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

STACKLEAK: Changes from the Original Version (4)

Brad Spengler

How security functionality will be properly implemented and
maintained upstream if the maintainers don’t understand what the
code they've copy+pasted from grsecurity does in the first place

https://grsecurity.net/an _ancient kernel hole is not closed.php

That is not applicable to STACKLEAK upstreaming efforts

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

https://grsecurity.net/an_ancient_kernel_hole_is_not_closed.php

What Does “Burnt by Linus” Mean?

o Strong language, even swearing (example)

o Technical objections are mixed with it

o NAKing without looking at the patches (example)
o Simply ignoring

o Maybe he is irritated with kernel hardening by default?

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

https://lkml.org/lkml/2018/8/15/450
https://lore.kernel.org/lkml/CA+55aFxEAYyrUkApo-dtZvxcYbvWBZJpUytjbm7e2wruTvbYjQ@mail.gmail.com/

What Does “Burnt by Linus” Mean?

o Strong language, even swearing (example)

o Technical objections are mixed with it

o NAKing without looking at the patches (example)
o Simply ignoring

o Maybe he is irritated with kernel hardening by default?

o | love the Linux kernel, but THAT kills my motivation

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

https://lkml.org/lkml/2018/8/15/450
https://lore.kernel.org/lkml/CA+55aFxEAYyrUkApo-dtZvxcYbvWBZJpUytjbm7e2wruTvbYjQ@mail.gmail.com/

Sisyphus or Phoenix?

Will Linus finally merge STACKLEAK?

Yes?

by Johann Vogel by Friedrich Justin Bertuch

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

Closing Thoughts

o WE are the Linux Kernel Community

o WE are responsible for servers, laptops, phones, PLCs, laser
cutters, and other crazy things running GNU /Linux

o Let's put MORE effort into Linux Kernel Security — and
we will not be ignored!

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

Thanks! Questions?

alex.popov@linux.com
©a13xp0p0v

http://blog.ptsecurity.com/
Qptsecurity

mailto:alex.popov@linux.com
https://twitter.com/a13xp0p0v
http://blog.ptsecurity.com/
https://twitter.com/ptsecurity

Important Limitation

* STACKLEAK doesn't help against such attacks

during a single syscall

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

Erasing the Kernel Stack (1)

stackleak_erase() on x86_64, if called from trampoline stack

1. search for (16+1) STACKLEAK_POISON values in a row

Legend:

thread stack top|

|:| STACKLEAK_POISON

lowest_stack T
1 |:| any other value

. reserved

thread stack pbottom - - -

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

Erasing the Kernel Stack (2)

stackleak_erase() on x86_64, if called from trampoline stack

2. write STACKLEAK_POISON values up to the stack top
3. update lowest_stack

Legend:

thread stack top
new lowest_stack A
lowest_stack

|:| STACKLEAK_POISON

|:| any other value
. reserved

found point

thread stack bottom

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

Kernel Compile-Time Instrumentation

o Is done by STACKLEAK GCC plugin
e Inserts stackleak_track_stack() call for functions that:

» have a big stack frame

» call alloca() (have variable length arrays)

o Insertsstackleak-check-allocal)—callbefore alloca () **

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

VLA Removal

** In v15 Stack Clash detection is completely dropped, since:

e VLA removal is almost finished

o global '-“Wvla" flag should arrive soon
https://patchwork.kernel.org/patch /10489873

Alexander Popov (Positive Technologies) STACKLEAK: A Long Way to the Linux Kernel Mainline

https://patchwork.kernel.org/patch/10489873

