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Agenda

CVE-2017-2636 overview

Exploit demo

Exploit steps:

I Achieve double-free with a race condition
I Turn double-free into use-after-free and exploit it
I Bypass SMEP (without ROP)

Defense
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https://nvd.nist.gov/vuln/detail/CVE-2017-2636


About CVE-2017-2636

LPE in Linux kernel

Bug type: race condition

In drivers/tty/n_hdlc.c

All major distros were a�ected (CONFIG_N_HDLC=m)
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What Is HDLC?

Stands for High-Level Data Link Control

Is a data link layer protocol

Its frames can be transmitted over serial links

Now used mainly for device-to-device connection
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Timeline (1)

The bug is introduced 2009-06-22

... ...

Suspicious crash by syzkaller (cool project!) 2017-02-01

Have a stable race condition repro 2017-02-03

Almost no sleep... :) ...

Have the exploit PoC and a �xing patch 2017-02-28
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https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=be10eb7589337e5defbe214dae038a53dd21add8
https://github.com/google/syzkaller


Timeline (2)

Inform security@kernel.org 2017-02-28

Linux distros are informed 2017-03-02

End of embargo, announce at oss-security 2017-03-07

Publish a write-up 2017-03-24

Patch the mainline to block similar exploits In progress
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mailto:security@kernel.org
http://seclists.org/oss-sec/2017/q1/569
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html
http://www.openwall.com/lists/kernel-hardening/2017/07/17/3


`N_HDLC` Race Condition (1)

The original driver used:

Self-made singly linked lists for data bu�ers

n_hdlc.tbuf pointer for bu�er retransmitting after tx

error in n_hdlc_send_frames()
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`N_HDLC` Race Condition (2)

The commit be10eb75893 added bu�er �ushing:

flush_tx_queue() can put n_hdlc.tbuf to

tx_free_buf_list too

Insanely wrong locking

Possible double-free in n_hdlc_release()
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`N_HDLC` Race Condition

Yes, it's dangerous!

http://www.foxnews.com/sports/slideshow/2013/02/23/crash-during-�nal-lap-2013-nascar-nationwide-series-race-
at-daytona.html
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CVE-2017-2636 Exploit Demo

Demo!
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CVE-2017-2636 Exploit Overview

1 Preparing N_HDLC line discipline

2 Hitting the race condition to get double-free

3 Heap spraying for turning double-free into use-after-free

4 Another heap spraying to exploit use-after-free

5 Heap stabilization

6 SMEP bypass (without ROP)
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Preparing for the Race

http://www.superstreetonline.com/features/1601-daigo-saito-garage-visit/photo-gallery/#photo-09
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Who Is Who: PTY Components
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Preparing for the Race (1)

Stick to one CPU core with sched_setaffinity()

Create a pseudoterminal master and slave pair:�� ��ptmd = open("/dev/ptmx", O_RDWR);

Set N_HDLC ldisc (n_hdlc.ko is loaded automatically):�
�

�



const int ldisc = N_HDLC;

ioctl(ptmd, TIOCSETD, &ldisc);
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Preparing for the Race (2)

Suspend the pty output:�� ��ioctl(ptmd, TCXONC, TCOOFF);

Write one data bu�er (saved in n_hdlc.tbuf):�� ��write(ptmd, buf, size);

Allow to run on all available CPU cores
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Now Go Racing!

http://�ndwallpaper.info/street+racing+cars/page/7/
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Racing

Start two threads:

Thread 1, �ush the data:�� ��ioctl(ptmd, TCFLSH, TCIOFLUSH);

Thread 2, start the suspended output:�� ��ioctl(ptmd, TCXONC, TCOON);
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Lags Make It... Faster (1)

1 Synchronize at pthread_barrier

2 Spin the lag in a busy loop

3 Interact with n_hdlc
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Lags Make It... Faster (2)

Calculate the lags (in microseconds) for the racing threads:#

"

 

!

if (loop % 2 == 0)

tmo1 = loop % MAX_RACE_LAG_USEC;

else

tmo2 = loop % MAX_RACE_LAG_USEC;
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Triggering Double-Free

Stick to a single CPU core again

Close the pseudoterminal master fd:

I n_hdlc_release() frees n_hdlc_buf items

I The possible double-free error happens here

I KASAN detects it as use-after-free

Alexander Popov (Positive Technologies) Race for Root SHA2017 21 / 55



Exploiting Double-Free

Now disable KASAN and try to exploit it!

If successful (uid has become 0), run shell

Otherwise, go racing again
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A Usual Double-Free Exploit (1)

All these objects reside at the same address
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A Usual Double-Free Exploit (2)

All these objects reside at the same address
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A Usual Double-Free Exploit (3)

All these objects reside at the same address
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A Usual Double-Free Exploit (4)

All these objects reside at the same address
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A Usual Double-Free Exploit (5)

All these objects reside at the same address
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A Usual Double-Free Exploit (6)

All these objects reside at the same address
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CVE-2017-2636 Exploit Requirements

n_hdlc_buf is allocated in the kmalloc-8192 slab cache

=> need 2 types of kernel objects from that cache:

1 With a function pointer

2 With the controllable payload to overwrite it
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`sk_bu�` Fits Well

It can provide a function pointer at the kmalloc-8192 slab
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Heap Spraying #1: Not So Easy

n_hdlc_release() frees 13 n_hdlc_buf items

straight away without any pause

Doubly freed item is somewhere at the beginning

I can't allocate sk_buff data between double free()

So the usual technique doesn't work here...
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Eh, Heap Spraying...

Still Puzzled Anyway #1...

https://www.�ickr.com/photos/philipdunn/3041924216
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Just Look Carefully And...

Wait, n_hdlc_release() doesn't crash the kernel =>

SLUB allocator accepts consecutive free() of the

same address =>

I can spray after n_hdlc_release() and...
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... Abuse SLUB's Naivety!

... get two sk_buff's pointing to the same memory! :)
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Hence, Heap Spraying #1

For turning double-free into use-after-free:

Spawn a lot of 8 KB UDP packets after the race

Keep them allocated to avoid a mess in SLUB freelist

Receive one of the twin sk_buff's

Using the other one is a use-after-free error!

N.B. Socket queues are limited in size
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Spraying Implementation (1)

Debugged with ftrace (nice technology!)
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A Usual Double-Free Exploit (5, 6)

All these objects reside at the same address
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Now Exploiting Use-After-Free

Heap spraying #2 for overwriting destructor_arg

Another sk_buff can't do it

I skb_shared_info is at the same o�set from head
I We don't control its contents

But the add_key syscall can:

I Allocate controllable data
I Allocate in kmalloc-8192
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`destructor_arg` Usage

At linux/net/core/skbuff.c in skb_release_data():'

&

$

%

if (shinfo->tx_flags &

SKBTX_DEV_ZEROCOPY) {

struct ubuf_info *uarg;

uarg = shinfo->destructor_arg;

if (uarg->callback)

uarg->callback(uarg, true);

}
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`add_key` VS `destructor_arg`
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Nice, But Key Data Quotas...

Controlled with /proc/sys/kernel/keys/

Owned by root

Default value of maxbytes is 20000 =>

Only 2 add_key syscalls can concurrently store our 8

KB payload in the kernel memory

Doesn't seem enough for heap spraying
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Eh, Quotas...

Still Puzzled Anyway #2...

http://www.ideachampions.com/weblogs/puzzled.jpg
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The Bright Idea

Inspired by the slides of Di Shen from Keen Security Lab:

Heap spraying can be successful even when add_key fails!

Kudos to him!
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https://speakerdeck.com/retme7/talk-is-cheap-show-me-the-code


Spraying Implementation (2)

The number of packets and add_key calls is determined empirically
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Working with Keys

add_key usage example:�
�

�
�

k[i] = syscall(__NR_add_key, "user",

"payload0", payload, payload_size,

KEY_SPEC_PROCESS_KEYRING);

Key invalidation:�
�

�

if (k[i] > 0)

syscall(__NR_keyctl, KEYCTL_INVALIDATE, k[i]);
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`add_key` VS `destructor_arg` (Again)
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SMEP

Supervisor Mode Execution Prevention

The x86 feature controlled by bit 20 of the CR4 register

Fault on fetching an instruction from a user-mode

address in the supervisor-mode
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Known SMEP Bypass Techniques (Linux Kernel)

Vitaly Nikolenko at Syscan360 (2016):

I Overwrite CR4 with stack pivoting + ROP
I Bypass SMEP+SMAP by abusing vDSO (need an
arbitrary write)

Philip Pettersson exploit for CVE-2016-8655:

I set_memory_rw() for vDSO and overwrite it

Gonna show another easy way!
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https://www.syscan360.org/slides/2016_SG_Vitaly_Nikolenko_Practical_SMEP_Bypass_Techniques.pdf
http://www.openwall.com/lists/oss-security/2016/12/07/3


Nice Find!

In arch/x86/include/asm/special_insns.h:�

�

�

�

static inline void native_write_cr4(unsigned long val)

{

asm volatile("mov %0,%%cr4"

: : "r" (val), "m" (__force_order));

}
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`destructor_arg` Usage (Again)

At linux/net/core/skbuff.c in skb_release_data():'

&

$

%

if (shinfo->tx_flags &

SKBTX_DEV_ZEROCOPY) {

struct ubuf_info *uarg;

uarg = shinfo->destructor_arg;

if (uarg->callback)

uarg->callback(uarg, true);

}
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Eureka!

Use native_write_cr4() as ubuf_info.callback
Put ubuf_info item at the mmap'ed address 0x406e0

Modi�ed from http://www.timesofsicily.com/wp-content/uploads/2014/01/archimedes.bmp
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SMEP Is Disabled

uarg->callback(uarg, true) works as

native_write_cr4(0x406e0)

0x406e0 is the right value of CR4 with disabled SMEP
(on my machine)

=> SMEP is disabled without ROP

Now win the race again to run the shellcode!
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CVE-2017-2636 Fix

My patch: 82f2341c94d

Use standard kernel linked list and proper locking

Get rid of racy n_hdlc.tbuf

In case of tx error, put current data bu�er after the

head of tx_buf_list
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https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=82f2341c94d270421f383641b7cd670e474db56b


SLUB Fix

SLUB assertion similar to fasttop check in GNU libc

Is currently discussed at LKML

Will hopefully come behind SLAB_FREELIST_HARDENED
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http://www.openwall.com/lists/kernel-hardening/2017/07/17/3


Thanks. Questions?

alex.popov@linux.com
@a13xp0p0v

http://blog.ptsecurity.com/
@ptsecurity_UK

https://www.linkedin.com/company/positive-technologies

mailto:alex.popov@linux.com
https://twitter.com/a13xp0p0v
http://blog.ptsecurity.com/
https://twitter.com/ptsecurity_UK
https://www.linkedin.com/company/positive-technologies

