
Race for Root
Analysis of the Linux Kernel Race Condition Exploit

Alexander Popov

Positive Technologies

SHA2017



About Me

Alexander Popov

Linux kernel developer

Security researcher at Positive Technologies

Alexander Popov (Positive Technologies) Race for Root SHA2017 2 / 55

 https://www.ptsecurity.com/


Agenda

CVE-2017-2636 overview

Exploit demo

Exploit steps:

I Achieve double-free with a race condition
I Turn double-free into use-after-free and exploit it
I Bypass SMEP (without ROP)

Defense

Alexander Popov (Positive Technologies) Race for Root SHA2017 3 / 55

https://nvd.nist.gov/vuln/detail/CVE-2017-2636


About CVE-2017-2636

LPE in Linux kernel

Bug type: race condition

In drivers/tty/n_hdlc.c

All major distros were a�ected (CONFIG_N_HDLC=m)

Alexander Popov (Positive Technologies) Race for Root SHA2017 4 / 55



What Is HDLC?

Stands for High-Level Data Link Control

Is a data link layer protocol

Its frames can be transmitted over serial links

Now used mainly for device-to-device connection

Alexander Popov (Positive Technologies) Race for Root SHA2017 5 / 55



Timeline (1)

The bug is introduced 2009-06-22

... ...

Suspicious crash by syzkaller (cool project!) 2017-02-01

Have a stable race condition repro 2017-02-03

Almost no sleep... :) ...

Have the exploit PoC and a �xing patch 2017-02-28

Alexander Popov (Positive Technologies) Race for Root SHA2017 6 / 55

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=be10eb7589337e5defbe214dae038a53dd21add8
https://github.com/google/syzkaller


Timeline (2)

Inform security@kernel.org 2017-02-28

Linux distros are informed 2017-03-02

End of embargo, announce at oss-security 2017-03-07

Publish a write-up 2017-03-24

Patch the mainline to block similar exploits In progress

Alexander Popov (Positive Technologies) Race for Root SHA2017 7 / 55

mailto:security@kernel.org
http://seclists.org/oss-sec/2017/q1/569
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html
http://www.openwall.com/lists/kernel-hardening/2017/07/17/3


`N_HDLC` Race Condition (1)

The original driver used:

Self-made singly linked lists for data bu�ers

n_hdlc.tbuf pointer for bu�er retransmitting after tx

error in n_hdlc_send_frames()

Alexander Popov (Positive Technologies) Race for Root SHA2017 8 / 55



`N_HDLC` Race Condition (2)

The commit be10eb75893 added bu�er �ushing:

flush_tx_queue() can put n_hdlc.tbuf to

tx_free_buf_list too

Insanely wrong locking

Possible double-free in n_hdlc_release()

Alexander Popov (Positive Technologies) Race for Root SHA2017 9 / 55



`N_HDLC` Race Condition

Yes, it's dangerous!

http://www.foxnews.com/sports/slideshow/2013/02/23/crash-during-�nal-lap-2013-nascar-nationwide-series-race-
at-daytona.html

Alexander Popov (Positive Technologies) Race for Root SHA2017 10 / 55



CVE-2017-2636 Exploit Demo

Demo!

Alexander Popov (Positive Technologies) Race for Root SHA2017 11 / 55



CVE-2017-2636 Exploit Overview

1 Preparing N_HDLC line discipline

2 Hitting the race condition to get double-free

3 Heap spraying for turning double-free into use-after-free

4 Another heap spraying to exploit use-after-free

5 Heap stabilization

6 SMEP bypass (without ROP)

Alexander Popov (Positive Technologies) Race for Root SHA2017 12 / 55



Preparing for the Race

http://www.superstreetonline.com/features/1601-daigo-saito-garage-visit/photo-gallery/#photo-09

Alexander Popov (Positive Technologies) Race for Root SHA2017 13 / 55



Who Is Who: PTY Components

Alexander Popov (Positive Technologies) Race for Root SHA2017 14 / 55



Preparing for the Race (1)

Stick to one CPU core with sched_setaffinity()

Create a pseudoterminal master and slave pair:�� ��ptmd = open("/dev/ptmx", O_RDWR);

Set N_HDLC ldisc (n_hdlc.ko is loaded automatically):�
�

�



const int ldisc = N_HDLC;

ioctl(ptmd, TIOCSETD, &ldisc);

Alexander Popov (Positive Technologies) Race for Root SHA2017 15 / 55



Preparing for the Race (2)

Suspend the pty output:�� ��ioctl(ptmd, TCXONC, TCOOFF);

Write one data bu�er (saved in n_hdlc.tbuf):�� ��write(ptmd, buf, size);

Allow to run on all available CPU cores

Alexander Popov (Positive Technologies) Race for Root SHA2017 16 / 55



Now Go Racing!

http://�ndwallpaper.info/street+racing+cars/page/7/

Alexander Popov (Positive Technologies) Race for Root SHA2017 17 / 55



Racing

Start two threads:

Thread 1, �ush the data:�� ��ioctl(ptmd, TCFLSH, TCIOFLUSH);

Thread 2, start the suspended output:�� ��ioctl(ptmd, TCXONC, TCOON);

Alexander Popov (Positive Technologies) Race for Root SHA2017 18 / 55



Lags Make It... Faster (1)

1 Synchronize at pthread_barrier

2 Spin the lag in a busy loop

3 Interact with n_hdlc

Alexander Popov (Positive Technologies) Race for Root SHA2017 19 / 55



Lags Make It... Faster (2)

Calculate the lags (in microseconds) for the racing threads:#

"

 

!

if (loop % 2 == 0)

tmo1 = loop % MAX_RACE_LAG_USEC;

else

tmo2 = loop % MAX_RACE_LAG_USEC;

Alexander Popov (Positive Technologies) Race for Root SHA2017 20 / 55



Triggering Double-Free

Stick to a single CPU core again

Close the pseudoterminal master fd:

I n_hdlc_release() frees n_hdlc_buf items

I The possible double-free error happens here

I KASAN detects it as use-after-free

Alexander Popov (Positive Technologies) Race for Root SHA2017 21 / 55



Exploiting Double-Free

Now disable KASAN and try to exploit it!

If successful (uid has become 0), run shell

Otherwise, go racing again

Alexander Popov (Positive Technologies) Race for Root SHA2017 22 / 55



A Usual Double-Free Exploit (1)

All these objects reside at the same address

Alexander Popov (Positive Technologies) Race for Root SHA2017 23 / 55



A Usual Double-Free Exploit (2)

All these objects reside at the same address

Alexander Popov (Positive Technologies) Race for Root SHA2017 24 / 55



A Usual Double-Free Exploit (3)

All these objects reside at the same address

Alexander Popov (Positive Technologies) Race for Root SHA2017 25 / 55



A Usual Double-Free Exploit (4)

All these objects reside at the same address

Alexander Popov (Positive Technologies) Race for Root SHA2017 26 / 55



A Usual Double-Free Exploit (5)

All these objects reside at the same address

Alexander Popov (Positive Technologies) Race for Root SHA2017 27 / 55



A Usual Double-Free Exploit (6)

All these objects reside at the same address

Alexander Popov (Positive Technologies) Race for Root SHA2017 28 / 55



CVE-2017-2636 Exploit Requirements

n_hdlc_buf is allocated in the kmalloc-8192 slab cache

=> need 2 types of kernel objects from that cache:

1 With a function pointer

2 With the controllable payload to overwrite it

Alexander Popov (Positive Technologies) Race for Root SHA2017 29 / 55



`sk_bu�` Fits Well

It can provide a function pointer at the kmalloc-8192 slab

Alexander Popov (Positive Technologies) Race for Root SHA2017 30 / 55



Heap Spraying #1: Not So Easy

n_hdlc_release() frees 13 n_hdlc_buf items

straight away without any pause

Doubly freed item is somewhere at the beginning

I can't allocate sk_buff data between double free()

So the usual technique doesn't work here...

Alexander Popov (Positive Technologies) Race for Root SHA2017 31 / 55



Eh, Heap Spraying...

Still Puzzled Anyway #1...

https://www.�ickr.com/photos/philipdunn/3041924216

Alexander Popov (Positive Technologies) Race for Root SHA2017 32 / 55



Just Look Carefully And...

Wait, n_hdlc_release() doesn't crash the kernel =>

SLUB allocator accepts consecutive free() of the

same address =>

I can spray after n_hdlc_release() and...

Alexander Popov (Positive Technologies) Race for Root SHA2017 33 / 55



... Abuse SLUB's Naivety!

... get two sk_buff's pointing to the same memory! :)

Alexander Popov (Positive Technologies) Race for Root SHA2017 34 / 55



Hence, Heap Spraying #1

For turning double-free into use-after-free:

Spawn a lot of 8 KB UDP packets after the race

Keep them allocated to avoid a mess in SLUB freelist

Receive one of the twin sk_buff's

Using the other one is a use-after-free error!

N.B. Socket queues are limited in size

Alexander Popov (Positive Technologies) Race for Root SHA2017 35 / 55



Spraying Implementation (1)

Debugged with ftrace (nice technology!)

Alexander Popov (Positive Technologies) Race for Root SHA2017 36 / 55



A Usual Double-Free Exploit (5, 6)

All these objects reside at the same address

Alexander Popov (Positive Technologies) Race for Root SHA2017 37 / 55



Now Exploiting Use-After-Free

Heap spraying #2 for overwriting destructor_arg

Another sk_buff can't do it

I skb_shared_info is at the same o�set from head
I We don't control its contents

But the add_key syscall can:

I Allocate controllable data
I Allocate in kmalloc-8192

Alexander Popov (Positive Technologies) Race for Root SHA2017 38 / 55



`destructor_arg` Usage

At linux/net/core/skbuff.c in skb_release_data():'

&

$

%

if (shinfo->tx_flags &

SKBTX_DEV_ZEROCOPY) {

struct ubuf_info *uarg;

uarg = shinfo->destructor_arg;

if (uarg->callback)

uarg->callback(uarg, true);

}

Alexander Popov (Positive Technologies) Race for Root SHA2017 39 / 55



`add_key` VS `destructor_arg`

Alexander Popov (Positive Technologies) Race for Root SHA2017 40 / 55



Nice, But Key Data Quotas...

Controlled with /proc/sys/kernel/keys/

Owned by root

Default value of maxbytes is 20000 =>

Only 2 add_key syscalls can concurrently store our 8

KB payload in the kernel memory

Doesn't seem enough for heap spraying

Alexander Popov (Positive Technologies) Race for Root SHA2017 41 / 55



Eh, Quotas...

Still Puzzled Anyway #2...

http://www.ideachampions.com/weblogs/puzzled.jpg

Alexander Popov (Positive Technologies) Race for Root SHA2017 42 / 55



The Bright Idea

Inspired by the slides of Di Shen from Keen Security Lab:

Heap spraying can be successful even when add_key fails!

Kudos to him!

Alexander Popov (Positive Technologies) Race for Root SHA2017 43 / 55

https://speakerdeck.com/retme7/talk-is-cheap-show-me-the-code


Spraying Implementation (2)

The number of packets and add_key calls is determined empirically

Alexander Popov (Positive Technologies) Race for Root SHA2017 44 / 55



Working with Keys

add_key usage example:�
�

�
�

k[i] = syscall(__NR_add_key, "user",

"payload0", payload, payload_size,

KEY_SPEC_PROCESS_KEYRING);

Key invalidation:�
�

�

if (k[i] > 0)

syscall(__NR_keyctl, KEYCTL_INVALIDATE, k[i]);

Alexander Popov (Positive Technologies) Race for Root SHA2017 45 / 55



`add_key` VS `destructor_arg` (Again)

Alexander Popov (Positive Technologies) Race for Root SHA2017 46 / 55



SMEP

Supervisor Mode Execution Prevention

The x86 feature controlled by bit 20 of the CR4 register

Fault on fetching an instruction from a user-mode

address in the supervisor-mode

Alexander Popov (Positive Technologies) Race for Root SHA2017 47 / 55



Known SMEP Bypass Techniques (Linux Kernel)

Vitaly Nikolenko at Syscan360 (2016):

I Overwrite CR4 with stack pivoting + ROP
I Bypass SMEP+SMAP by abusing vDSO (need an
arbitrary write)

Philip Pettersson exploit for CVE-2016-8655:

I set_memory_rw() for vDSO and overwrite it

Gonna show another easy way!

Alexander Popov (Positive Technologies) Race for Root SHA2017 48 / 55

https://www.syscan360.org/slides/2016_SG_Vitaly_Nikolenko_Practical_SMEP_Bypass_Techniques.pdf
http://www.openwall.com/lists/oss-security/2016/12/07/3


Nice Find!

In arch/x86/include/asm/special_insns.h:�

�

�

�

static inline void native_write_cr4(unsigned long val)

{

asm volatile("mov %0,%%cr4"

: : "r" (val), "m" (__force_order));

}

Alexander Popov (Positive Technologies) Race for Root SHA2017 49 / 55



`destructor_arg` Usage (Again)

At linux/net/core/skbuff.c in skb_release_data():'

&

$

%

if (shinfo->tx_flags &

SKBTX_DEV_ZEROCOPY) {

struct ubuf_info *uarg;

uarg = shinfo->destructor_arg;

if (uarg->callback)

uarg->callback(uarg, true);

}

Alexander Popov (Positive Technologies) Race for Root SHA2017 50 / 55



Eureka!

Use native_write_cr4() as ubuf_info.callback
Put ubuf_info item at the mmap'ed address 0x406e0

Modi�ed from http://www.timesofsicily.com/wp-content/uploads/2014/01/archimedes.bmp

Alexander Popov (Positive Technologies) Race for Root SHA2017 51 / 55



SMEP Is Disabled

uarg->callback(uarg, true) works as

native_write_cr4(0x406e0)

0x406e0 is the right value of CR4 with disabled SMEP
(on my machine)

=> SMEP is disabled without ROP

Now win the race again to run the shellcode!

Alexander Popov (Positive Technologies) Race for Root SHA2017 52 / 55



CVE-2017-2636 Fix

My patch: 82f2341c94d

Use standard kernel linked list and proper locking

Get rid of racy n_hdlc.tbuf

In case of tx error, put current data bu�er after the

head of tx_buf_list

Alexander Popov (Positive Technologies) Race for Root SHA2017 53 / 55

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=82f2341c94d270421f383641b7cd670e474db56b


SLUB Fix

SLUB assertion similar to fasttop check in GNU libc

Is currently discussed at LKML

Will hopefully come behind SLAB_FREELIST_HARDENED

Alexander Popov (Positive Technologies) Race for Root SHA2017 54 / 55

http://www.openwall.com/lists/kernel-hardening/2017/07/17/3


Thanks. Questions?

alex.popov@linux.com
@a13xp0p0v

http://blog.ptsecurity.com/
@ptsecurity_UK

https://www.linkedin.com/company/positive-technologies

mailto:alex.popov@linux.com
https://twitter.com/a13xp0p0v
http://blog.ptsecurity.com/
https://twitter.com/ptsecurity_UK
https://www.linkedin.com/company/positive-technologies

