
Kernel-Hack-Drill: Environment For Developing
Linux Kernel Exploits

Alexander Popov

April 10, 2025

Teaser

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 2

Teaser

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 3

Who Am I

Alexander Popov

Linux kernel developer since 2012

Maintainer of some free software projects

Principal Security Researcher and Head of

Open Source Program Office at

Conference speaker:

Zer0Con, OffensiveCon, H2HC, Nullcon Goa, Linux Security Summit, Still Hacking Anyway, HITB,

Positive Hack Days, ZeroNights, HighLoad++, Open Source Summit, OS Day, Linux Plumbers...

a13xp0p0v.github.io/conference_talks

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 4

https://a13xp0p0v.github.io/conference_talks/

Agenda

1 The bug collision story

2 About CVE-2024-50264

3 A new approach to exploiting it

4 How kernel-hack-drill helped to achieve this

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 5

How It Began

I first found and exploited a bug in AF_VSOCK in 2021:

Four Bytes of Power: Exploiting CVE-2021-26708 in the Linux kernel

a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html

In spring 2024, I was fuzzing the kernel with a customized syzkaller

I found another bug in AF_VSOCK in April 2024

I minimized the reproducer, disabled KASAN and

got instant null-ptr-deref in a kernel worker

Postponed this bug

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 6

https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html

Bug Collision

I decided to look at this bug again in autumn 2024

Results were promising but then...

Got bug collision with Hyunwoo Kim (@v4bel) and Wongi Lee (@qwerty)

They disclosed this bug as CVE-2024-50264 and used it at kernelCTF

Their patch turned my PoC into null-ptr-deref

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 7

Bug Collision

I decided to look at this bug again in autumn 2024

Results were promising but then...

Got bug collision with Hyunwoo Kim (@v4bel) and Wongi Lee (@qwerty)

They disclosed this bug as CVE-2024-50264 and used it at kernelCTF

Their patch turned my PoC into null-ptr-deref

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 7

Continue Anyway

The exploit strategy by @v4bel and @qwerty looked very complicated

github.com/google/security-research/pull/145/files

I had some different ideas and decided to continue my research anyway

I chose Ubuntu Server 24.04 with a fresh

OEM/HWE kernel (v6.11) as the target

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 8

Viktor Vasnetsov: The Knight at the Crossroads (1878)

https://github.com/google/security-research/pull/145/files

CVE-2024-50264

The bug was introduced in August 2016 (commit 06a8fc78367d, Linux v4.8)

Race condition in AF_VSOCK sockets between connect() and a POSIX signal

CONFIG_USER_NS is not required

UAF on virtio_vsock_sock object (kmalloc-96)

Memory corruption: UAF write in a kernel worker

It has a lot of nasty limitations for the exploitation

The worst bug for the exploitation that I’ve ever seen

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 9

Reproducing CVE-2024-50264: Immortal Signal Handler

@v4bel & @qwerty used SIGKILL

My fuzzer found another approach, which amazed me

struct sigevent sev = {};

timer_t race_timer = 0;

sev.sigev_notify = SIGEV_SIGNAL; /* Notification type */

sev.sigev_signo = 33; /* Secret NPTL Signal (see nptl(7)) */

ret = timer_create(CLOCK_MONOTONIC, &sev, &race_timer);

Native POSIX Threads Library makes internal use of signal 33

Syscall wrappers and glibc functions hide this signal from applications

So I can use timer_settime() for race_timer

It gives control of timing: at which moment signal should interrupt connect()

It is invisible for the exploit process and doesn’t kill it

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 10

CVE-2024-50264: Code Performing UAF Write

This function is called in kworker after virtio_vsock_sock is freed

static bool virtio_transport_space_update(struct sock *sk,
struct sk_buff *skb)

{
struct virtio_vsock_hdr *hdr = virtio_vsock_hdr(skb);
struct vsock_sock *vsk = vsock_sk(sk);
struct virtio_vsock_sock *vvs = vsk->trans; /* ptr to freed object */
bool space_available;

if (!vvs)
return true;

spin_lock_bh(&vvs->tx_lock); /* proceed if 4 bytes are zero (UAF write non-zero to lock) */
vvs->peer_buf_alloc = le32_to_cpu(hdr->buf_alloc); /* UAF write 4 bytes */
vvs->peer_fwd_cnt = le32_to_cpu(hdr->fwd_cnt); /* UAF write 4 bytes */
space_available = virtio_transport_has_space(vsk); /* UAF read, not interesting */
spin_unlock_bh(&vvs->tx_lock); /* UAF write, restore 4 zero bytes */
return space_available;

}

There is no pointer dereference in freed object

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 11

CVE-2024-50264: UAF Write

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 12

UAF Write: Data Control

About virtio_vsock_sock.peer_buf_alloc value control from userspace:

/* Increase the range for the value that we want to write during UAF: */

uaf_val_limit = 0x1lu; /* can’t be zero */

setsockopt(vsock1, PF_VSOCK, SO_VM_SOCKETS_BUFFER_MIN_SIZE,

&uaf_val_limit, sizeof(uaf_val_limit));

uaf_val_limit = 0xfffffffflu;

setsockopt(vsock1, PF_VSOCK, SO_VM_SOCKETS_BUFFER_MAX_SIZE,

&uaf_val_limit, sizeof(uaf_val_limit));

/* Set the 4-byte value that we want to write during UAF: */

setsockopt(vsock1, PF_VSOCK, SO_VM_SOCKETS_BUFFER_SIZE,

&uaf_val, sizeof(uaf_val));

About virtio_vsock_sock.peer_fwd_cnt value control from userspace:

It represents the number of bytes pushed through vsock using sendmsg()/recvmsg()

Zero by default (4 zero bytes)

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 13

Not So Fast: CVE-2024-50264 Limitations

1 Vulnerable virtio_vsock_sock client object is allocated together with the server one

It’s bad for cross-cache attack

2 Reproducing this race condition is very unstable

3 UAF write happens in kworker within few µs after kfree()

4 Null-ptr-deref happens in kworker right after UAF write

5 If this kernel oops is avoided, another null-ptr-deref happens

in kworker after VSOCK_CLOSE_TIMEOUT (8 sec)

6 Kworker hangs if virtio_vsock_sock.tx_lock is not zero

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 14

https://www.youtube.com/watch?v=hbKEdmPPxy4

Not So Fast: CVE-2024-50264 Limitations

1 Vulnerable virtio_vsock_sock client object is allocated together with the server one

It’s bad for cross-cache attack

2 Reproducing this race condition is very unstable

3 UAF write happens in kworker within few µs after kfree()

4 Null-ptr-deref happens in kworker right after UAF write

5 If this kernel oops is avoided, another null-ptr-deref happens

in kworker after VSOCK_CLOSE_TIMEOUT (8 sec)

6 Kworker hangs if virtio_vsock_sock.tx_lock is not zero

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 14

https://www.youtube.com/watch?v=hbKEdmPPxy4

Not So Fast: CVE-2024-50264 Limitations

1 Vulnerable virtio_vsock_sock client object is allocated together with the server one

It’s bad for cross-cache attack

2 Reproducing this race condition is very unstable

3 UAF write happens in kworker within few µs after kfree()

4 Null-ptr-deref happens in kworker right after UAF write

5 If this kernel oops is avoided, another null-ptr-deref happens

in kworker after VSOCK_CLOSE_TIMEOUT (8 sec)

6 Kworker hangs if virtio_vsock_sock.tx_lock is not zero

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 14

https://www.youtube.com/watch?v=hbKEdmPPxy4

Not So Fast: CVE-2024-50264 Limitations

1 Vulnerable virtio_vsock_sock client object is allocated together with the server one

It’s bad for cross-cache attack

2 Reproducing this race condition is very unstable

3 UAF write happens in kworker within few µs after kfree()

4 Null-ptr-deref happens in kworker right after UAF write

5 If this kernel oops is avoided, another null-ptr-deref happens

in kworker after VSOCK_CLOSE_TIMEOUT (8 sec)

6 Kworker hangs if virtio_vsock_sock.tx_lock is not zero

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 14

https://www.youtube.com/watch?v=hbKEdmPPxy4

Not So Fast: CVE-2024-50264 Limitations

1 Vulnerable virtio_vsock_sock client object is allocated together with the server one

It’s bad for cross-cache attack

2 Reproducing this race condition is very unstable

3 UAF write happens in kworker within few µs after kfree()

4 Null-ptr-deref happens in kworker right after UAF write

5 If this kernel oops is avoided, another null-ptr-deref happens

in kworker after VSOCK_CLOSE_TIMEOUT (8 sec)

6 Kworker hangs if virtio_vsock_sock.tx_lock is not zero

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 14

https://www.youtube.com/watch?v=hbKEdmPPxy4

Not So Fast: CVE-2024-50264 Limitations

1 Vulnerable virtio_vsock_sock client object is allocated together with the server one

It’s bad for cross-cache attack

2 Reproducing this race condition is very unstable

3 UAF write happens in kworker within few µs after kfree()

4 Null-ptr-deref happens in kworker right after UAF write

5 If this kernel oops is avoided, another null-ptr-deref happens

in kworker after VSOCK_CLOSE_TIMEOUT (8 sec)

6 Kworker hangs if virtio_vsock_sock.tx_lock is not zero

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 14

https://www.youtube.com/watch?v=hbKEdmPPxy4

Not So Fast: CVE-2024-50264 Limitations

Challenge

Now you can see why this was the worst bug

for exploitation I had ever seen

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 15

Exploit Strategy of @v4bel & @qwerty

1 Large-scale BPF JIT Spray populating a significant portion of the physical memory

2 SLUBStick technique github.com/IAIK/SLUBStick

Using timing side channel to determine number of objects in the active slab

Allocating the virtio_vsock_sock client and server objects in different slabs

It’s possible by making them the last and first objects in slabs

3 Dirty Pagetable technique yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

Cross-allocator attack reclaiming slab with UAF object for Page Table Entry

UAF write to PTE to make it possibly point a BPF JIT region

4 Inserting the privilege escalation payload into BPF code

5 Socket communication to trigger the privesc payload

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 16

https://github.com/IAIK/SLUBStick
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

Exploit Strategy of @v4bel & @qwerty

1 Large-scale BPF JIT Spray populating a significant portion of the physical memory

2 SLUBStick technique github.com/IAIK/SLUBStick

Using timing side channel to determine number of objects in the active slab

Allocating the virtio_vsock_sock client and server objects in different slabs

It’s possible by making them the last and first objects in slabs

3 Dirty Pagetable technique yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

Cross-allocator attack reclaiming slab with UAF object for Page Table Entry

UAF write to PTE to make it possibly point a BPF JIT region

4 Inserting the privilege escalation payload into BPF code

5 Socket communication to trigger the privesc payload

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 16

https://github.com/IAIK/SLUBStick
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

Exploit Strategy of @v4bel & @qwerty

1 Large-scale BPF JIT Spray populating a significant portion of the physical memory

2 SLUBStick technique github.com/IAIK/SLUBStick

Using timing side channel to determine number of objects in the active slab

Allocating the virtio_vsock_sock client and server objects in different slabs

It’s possible by making them the last and first objects in slabs

3 Dirty Pagetable technique yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

Cross-allocator attack reclaiming slab with UAF object for Page Table Entry

UAF write to PTE to make it possibly point a BPF JIT region

4 Inserting the privilege escalation payload into BPF code

5 Socket communication to trigger the privesc payload

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 16

https://github.com/IAIK/SLUBStick
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

Exploit Strategy of @v4bel & @qwerty

1 Large-scale BPF JIT Spray populating a significant portion of the physical memory

2 SLUBStick technique github.com/IAIK/SLUBStick

Using timing side channel to determine number of objects in the active slab

Allocating the virtio_vsock_sock client and server objects in different slabs

It’s possible by making them the last and first objects in slabs

3 Dirty Pagetable technique yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

Cross-allocator attack reclaiming slab with UAF object for Page Table Entry

UAF write to PTE to make it possibly point a BPF JIT region

4 Inserting the privilege escalation payload into BPF code

5 Socket communication to trigger the privesc payload

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 16

https://github.com/IAIK/SLUBStick
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

Exploit Strategy of @v4bel & @qwerty

1 Large-scale BPF JIT Spray populating a significant portion of the physical memory

2 SLUBStick technique github.com/IAIK/SLUBStick

Using timing side channel to determine number of objects in the active slab

Allocating the virtio_vsock_sock client and server objects in different slabs

It’s possible by making them the last and first objects in slabs

3 Dirty Pagetable technique yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

Cross-allocator attack reclaiming slab with UAF object for Page Table Entry

UAF write to PTE to make it possibly point a BPF JIT region

4 Inserting the privilege escalation payload into BPF code

5 Socket communication to trigger the privesc payload

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 16

https://github.com/IAIK/SLUBStick
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

My First Ideas on Exploit Strategy

Try UAF write to some kernel object

Should I search kernel objects in kmalloc-96?

No! Ubuntu Server 24.04 has:

CONFIG_RANDOM_KMALLOC_CACHES=y

CONFIG_SLAB_BUCKETS=y

CONFIG_SLUB_CPU_PARTIAL=y

I will try cross-cache attack

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 17

Possible Target for UAF Write: struct cred

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 18

Target for UAF Write: struct cred (No Way)

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 19

Target for UAF Write: struct msg_msg

Why? Because I like it

I first used it as a UAF target object in 2021

a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html

It was a novel approach back then

I decided to create something new again

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 20

https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html

virtio_vsock_sock vs msg_msg

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 21

Bypassing the Unwanted msg_msg.m_list Corruption

msg_msg.m_list.prev would be interpreted as non-null tx_lock

virtio_transport_space_update() would hang in spin_lock_bh()

Need to initialize msg_msg.m_list.prev after the UAF write

Can we postpone placing msg_msg in the message queue?

Yes!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 22

Spray msg_msg Allowing m_list Corruption (Novel Technique?)

1 Fill the message queue almost completely before sending the target msg_msg

The message queue size is MSGMNB (16384 bytes)

Send 2 clogging messages of of 8191 bytes each

2 bytes left in the queue, don’t call msgrcv()

2 Spray target msg_msg objects

Call the msgsnd() syscall in separate pthreads

Kernel allocates target msg_msg and msgsnd() blocks

3 Perform UAF write, corrupt msg_msg.m_list as you want

4 Perform msgrcv() for clogging messages

Now the kernel can add sprayed msg_msg to the queue

The kernel fixes the corrupted msg_msg.m_list pointers!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 23

https://www.youtube.com/watch?v=0XVCz6nekJc

Spray msg_msg Allowing m_list Corruption (Novel Technique?)

1 Fill the message queue almost completely before sending the target msg_msg

The message queue size is MSGMNB (16384 bytes)

Send 2 clogging messages of of 8191 bytes each

2 bytes left in the queue, don’t call msgrcv()

2 Spray target msg_msg objects

Call the msgsnd() syscall in separate pthreads

Kernel allocates target msg_msg and msgsnd() blocks

3 Perform UAF write, corrupt msg_msg.m_list as you want

4 Perform msgrcv() for clogging messages

Now the kernel can add sprayed msg_msg to the queue

The kernel fixes the corrupted msg_msg.m_list pointers!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 23

https://www.youtube.com/watch?v=0XVCz6nekJc

Spray msg_msg Allowing m_list Corruption (Novel Technique?)

1 Fill the message queue almost completely before sending the target msg_msg

The message queue size is MSGMNB (16384 bytes)

Send 2 clogging messages of of 8191 bytes each

2 bytes left in the queue, don’t call msgrcv()

2 Spray target msg_msg objects

Call the msgsnd() syscall in separate pthreads

Kernel allocates target msg_msg and msgsnd() blocks

3 Perform UAF write, corrupt msg_msg.m_list as you want

4 Perform msgrcv() for clogging messages

Now the kernel can add sprayed msg_msg to the queue

The kernel fixes the corrupted msg_msg.m_list pointers!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 23

https://www.youtube.com/watch?v=0XVCz6nekJc

Spray msg_msg Allowing m_list Corruption (Novel Technique?)

1 Fill the message queue almost completely before sending the target msg_msg

The message queue size is MSGMNB (16384 bytes)

Send 2 clogging messages of of 8191 bytes each

2 bytes left in the queue, don’t call msgrcv()

2 Spray target msg_msg objects

Call the msgsnd() syscall in separate pthreads

Kernel allocates target msg_msg and msgsnd() blocks

3 Perform UAF write, corrupt msg_msg.m_list as you want

4 Perform msgrcv() for clogging messages

Now the kernel can add sprayed msg_msg to the queue

The kernel fixes the corrupted msg_msg.m_list pointers!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 23

https://www.youtube.com/watch?v=0XVCz6nekJc

virtio_vsock_sock vs msg_msg

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 24

Nice Trick, What’s Next?

1 I managed to overwrite msg_msg.m_ts and make kernel fix up msg_msg.m_list

This technique is also useful for blind overwriting of msg_msg

No kernel infoleak is needed — the kernel will restore the corrupted pointers

2 To use this trick, I needed to perform cross-cache attack

virtio_vsock_sock lives in one of 16 kmalloc-rnd-?-96 slab caches

(CONFIG_RANDOM_KMALLOC_CACHES)

msg_msg lives in msg_msg-96 slab cache (CONFIG_SLAB_BUCKETS)

3 Problems:

I needed to learn how cross-cache attacks work on the latest Ubuntu kernel

Testing exploit primitives together with this crazy race condition was painful

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 25

Nice Trick, What’s Next?

1 I managed to overwrite msg_msg.m_ts and make kernel fix up msg_msg.m_list

This technique is also useful for blind overwriting of msg_msg

No kernel infoleak is needed — the kernel will restore the corrupted pointers

2 To use this trick, I needed to perform cross-cache attack

virtio_vsock_sock lives in one of 16 kmalloc-rnd-?-96 slab caches

(CONFIG_RANDOM_KMALLOC_CACHES)

msg_msg lives in msg_msg-96 slab cache (CONFIG_SLAB_BUCKETS)

3 Problems:

I needed to learn how cross-cache attacks work on the latest Ubuntu kernel

Testing exploit primitives together with this crazy race condition was painful

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 25

Nice Trick, What’s Next?

1 I managed to overwrite msg_msg.m_ts and make kernel fix up msg_msg.m_list

This technique is also useful for blind overwriting of msg_msg

No kernel infoleak is needed — the kernel will restore the corrupted pointers

2 To use this trick, I needed to perform cross-cache attack

virtio_vsock_sock lives in one of 16 kmalloc-rnd-?-96 slab caches

(CONFIG_RANDOM_KMALLOC_CACHES)

msg_msg lives in msg_msg-96 slab cache (CONFIG_SLAB_BUCKETS)

3 Problems:

I needed to learn how cross-cache attacks work on the latest Ubuntu kernel

Testing exploit primitives together with this crazy race condition was painful

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 25

Solution That Makes Researcher’s Life Easier

Unstable race condition creating problems?

Use a testing ground for developing

the exploit primitives!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 26

Kernel Hack Drill

Open-source project: github.com/a13xp0p0v/kernel-hack-drill

Provides test environment for developing the Linux kernel exploit primitives you need

Includes a good step-by-step setup guide in the README (kudos to the contributors!)

A bit similar to github.com/hacktivesec/KRWX, but

Much simpler

Contains interesting PoC exploits

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 27

https://www.pngall.com/wp-content/uploads/4/Drill-Machine-PNG-Free-Download.png

https://github.com/a13xp0p0v/kernel-hack-drill
https://github.com/hacktivesec/KRWX

Kernel Hack Drill Contents: Kernel Module

1 drill_mod.c

A small Linux kernel module

Provides /proc/drill_act file as a simple interface

to userspace

Contains nice vulnerabilities that you control

2 drill.h

Header file describing the drill_mod.ko interface

3 drill_test.c

Userspace test for drill_mod.ko

It also passes if CONFIG_KASAN=y

#define DRILL_N 10240
#define DRILL_ITEM_SIZE 95

struct drill_item_t {
unsigned long foobar;
void (*callback)(void);
char data[]; /* C99 flexible array */

};

enum drill_act_t {
DRILL_ACT_NONE = 0,
DRILL_ACT_ALLOC = 1,
DRILL_ACT_CALLBACK = 2,
DRILL_ACT_SAVE_VAL = 3,
DRILL_ACT_FREE = 4,
DRILL_ACT_RESET = 5

};

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 28

Kernel Hack Drill Contents: PoC Exploits

1 drill_uaf_callback.c

UAF exploit invoking a callback in the freed drill_item_t struct

Performs control flow hijack and gains LPE

2 drill_uaf_write_msg_msg.c

UAF exploit writing data to the freed drill_item_t struct

Performs a cross-cache attack, overwrites msg_msg.m_ts

Enables out-of-bounds read of the kernel memory

3 drill_uaf_write_pipe_buffer.c

UAF exploit writing data to the freed drill_item_t struct

Performs cross-cache attack, overwrites pipe_buffer.flags

Implements the Dirty Pipe attack and gains LPE

4 More PoC exploits will come soon!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 29

https://www.printables.com/model/78077-drill-guide

Kernel Hack Drill Contents: PoC Exploits

1 drill_uaf_callback.c

UAF exploit invoking a callback in the freed drill_item_t struct

Performs control flow hijack and gains LPE

2 drill_uaf_write_msg_msg.c

UAF exploit writing data to the freed drill_item_t struct

Performs a cross-cache attack, overwrites msg_msg.m_ts

Enables out-of-bounds read of the kernel memory

3 drill_uaf_write_pipe_buffer.c

UAF exploit writing data to the freed drill_item_t struct

Performs cross-cache attack, overwrites pipe_buffer.flags

Implements the Dirty Pipe attack and gains LPE

4 More PoC exploits will come soon!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 29

https://www.printables.com/model/78077-drill-guide

Kernel Hack Drill Contents: PoC Exploits

1 drill_uaf_callback.c

UAF exploit invoking a callback in the freed drill_item_t struct

Performs control flow hijack and gains LPE

2 drill_uaf_write_msg_msg.c

UAF exploit writing data to the freed drill_item_t struct

Performs a cross-cache attack, overwrites msg_msg.m_ts

Enables out-of-bounds read of the kernel memory

3 drill_uaf_write_pipe_buffer.c

UAF exploit writing data to the freed drill_item_t struct

Performs cross-cache attack, overwrites pipe_buffer.flags

Implements the Dirty Pipe attack and gains LPE

4 More PoC exploits will come soon!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 29

https://www.printables.com/model/78077-drill-guide

Kernel Hack Drill Contents: PoC Exploits

1 drill_uaf_callback.c

UAF exploit invoking a callback in the freed drill_item_t struct

Performs control flow hijack and gains LPE

2 drill_uaf_write_msg_msg.c

UAF exploit writing data to the freed drill_item_t struct

Performs a cross-cache attack, overwrites msg_msg.m_ts

Enables out-of-bounds read of the kernel memory

3 drill_uaf_write_pipe_buffer.c

UAF exploit writing data to the freed drill_item_t struct

Performs cross-cache attack, overwrites pipe_buffer.flags

Implements the Dirty Pipe attack and gains LPE

4 More PoC exploits will come soon!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 29

https://www.printables.com/model/78077-drill-guide

Cross-Cache Attack in Kernel Hack Drill

Standard cross-cache procedure, see the code: kernel-hack-drill/drill_uaf_write_msg_msg.c

1 Collect the needed info in /sys/kernel/slab: cpu_partial=120, objs_per_slab=42

2 Create a new active slab: allocate objs_per_slab objects

3 Allocate (objs_per_slab * cpu_partial) objects for the partial list

4 Create the vulnerable slab: allocate objs_per_slab objects

5 Obtain dangling reference to the vulnerable object for UAF

6 Create a new active slab: allocate objs_per_slab objects

7 Free the slab with UAF object: free (objs_per_slab * 2 - 1) objects before the last one

8 Clean up the partial list: free one of each objs_per_slab objects in the reserved slabs

9 Reclaim the page with UAF object: spray target objects

10 Exploit UAF

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 30

https://github.com/a13xp0p0v/kernel-hack-drill/blob/master/drill_uaf_write_msg_msg.c

Cross-Cache Attack in Kernel Hack Drill

Standard cross-cache procedure, see the code: kernel-hack-drill/drill_uaf_write_msg_msg.c

1 Collect the needed info in /sys/kernel/slab: cpu_partial=120, objs_per_slab=42

2 Create a new active slab: allocate objs_per_slab objects

3 Allocate (objs_per_slab * cpu_partial) objects for the partial list

4 Create the vulnerable slab: allocate objs_per_slab objects

5 Obtain dangling reference to the vulnerable object for UAF

6 Create a new active slab: allocate objs_per_slab objects

7 Free the slab with UAF object: free (objs_per_slab * 2 - 1) objects before the last one

8 Clean up the partial list: free one of each objs_per_slab objects in the reserved slabs

9 Reclaim the page with UAF object: spray target objects

10 Exploit UAF

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 30

https://github.com/a13xp0p0v/kernel-hack-drill/blob/master/drill_uaf_write_msg_msg.c

Cross-Cache Attack in Kernel Hack Drill

Standard cross-cache procedure, see the code: kernel-hack-drill/drill_uaf_write_msg_msg.c

1 Collect the needed info in /sys/kernel/slab: cpu_partial=120, objs_per_slab=42

2 Create a new active slab: allocate objs_per_slab objects

3 Allocate (objs_per_slab * cpu_partial) objects for the partial list

4 Create the vulnerable slab: allocate objs_per_slab objects

5 Obtain dangling reference to the vulnerable object for UAF

6 Create a new active slab: allocate objs_per_slab objects

7 Free the slab with UAF object: free (objs_per_slab * 2 - 1) objects before the last one

8 Clean up the partial list: free one of each objs_per_slab objects in the reserved slabs

9 Reclaim the page with UAF object: spray target objects

10 Exploit UAF

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 30

https://github.com/a13xp0p0v/kernel-hack-drill/blob/master/drill_uaf_write_msg_msg.c

Cross-Cache Attack in Kernel Hack Drill

Standard cross-cache procedure, see the code: kernel-hack-drill/drill_uaf_write_msg_msg.c

1 Collect the needed info in /sys/kernel/slab: cpu_partial=120, objs_per_slab=42

2 Create a new active slab: allocate objs_per_slab objects

3 Allocate (objs_per_slab * cpu_partial) objects for the partial list

4 Create the vulnerable slab: allocate objs_per_slab objects

5 Obtain dangling reference to the vulnerable object for UAF

6 Create a new active slab: allocate objs_per_slab objects

7 Free the slab with UAF object: free (objs_per_slab * 2 - 1) objects before the last one

8 Clean up the partial list: free one of each objs_per_slab objects in the reserved slabs

9 Reclaim the page with UAF object: spray target objects

10 Exploit UAF

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 30

https://github.com/a13xp0p0v/kernel-hack-drill/blob/master/drill_uaf_write_msg_msg.c

Cross-Cache Attack in Kernel Hack Drill

Standard cross-cache procedure, see the code: kernel-hack-drill/drill_uaf_write_msg_msg.c

1 Collect the needed info in /sys/kernel/slab: cpu_partial=120, objs_per_slab=42

2 Create a new active slab: allocate objs_per_slab objects

3 Allocate (objs_per_slab * cpu_partial) objects for the partial list

4 Create the vulnerable slab: allocate objs_per_slab objects

5 Obtain dangling reference to the vulnerable object for UAF

6 Create a new active slab: allocate objs_per_slab objects

7 Free the slab with UAF object: free (objs_per_slab * 2 - 1) objects before the last one

8 Clean up the partial list: free one of each objs_per_slab objects in the reserved slabs

9 Reclaim the page with UAF object: spray target objects

10 Exploit UAF

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 30

https://github.com/a13xp0p0v/kernel-hack-drill/blob/master/drill_uaf_write_msg_msg.c

Cross-Cache Attack in Kernel Hack Drill

Standard cross-cache procedure, see the code: kernel-hack-drill/drill_uaf_write_msg_msg.c

1 Collect the needed info in /sys/kernel/slab: cpu_partial=120, objs_per_slab=42

2 Create a new active slab: allocate objs_per_slab objects

3 Allocate (objs_per_slab * cpu_partial) objects for the partial list

4 Create the vulnerable slab: allocate objs_per_slab objects

5 Obtain dangling reference to the vulnerable object for UAF

6 Create a new active slab: allocate objs_per_slab objects

7 Free the slab with UAF object: free (objs_per_slab * 2 - 1) objects before the last one

8 Clean up the partial list: free one of each objs_per_slab objects in the reserved slabs

9 Reclaim the page with UAF object: spray target objects

10 Exploit UAF

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 30

https://github.com/a13xp0p0v/kernel-hack-drill/blob/master/drill_uaf_write_msg_msg.c

Cross-Cache Attack in Kernel Hack Drill

Standard cross-cache procedure, see the code: kernel-hack-drill/drill_uaf_write_msg_msg.c

1 Collect the needed info in /sys/kernel/slab: cpu_partial=120, objs_per_slab=42

2 Create a new active slab: allocate objs_per_slab objects

3 Allocate (objs_per_slab * cpu_partial) objects for the partial list

4 Create the vulnerable slab: allocate objs_per_slab objects

5 Obtain dangling reference to the vulnerable object for UAF

6 Create a new active slab: allocate objs_per_slab objects

7 Free the slab with UAF object: free (objs_per_slab * 2 - 1) objects before the last one

8 Clean up the partial list: free one of each objs_per_slab objects in the reserved slabs

9 Reclaim the page with UAF object: spray target objects

10 Exploit UAF

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 30

https://github.com/a13xp0p0v/kernel-hack-drill/blob/master/drill_uaf_write_msg_msg.c

Cross-Cache Attack in Kernel Hack Drill

Standard cross-cache procedure, see the code: kernel-hack-drill/drill_uaf_write_msg_msg.c

1 Collect the needed info in /sys/kernel/slab: cpu_partial=120, objs_per_slab=42

2 Create a new active slab: allocate objs_per_slab objects

3 Allocate (objs_per_slab * cpu_partial) objects for the partial list

4 Create the vulnerable slab: allocate objs_per_slab objects

5 Obtain dangling reference to the vulnerable object for UAF

6 Create a new active slab: allocate objs_per_slab objects

7 Free the slab with UAF object: free (objs_per_slab * 2 - 1) objects before the last one

8 Clean up the partial list: free one of each objs_per_slab objects in the reserved slabs

9 Reclaim the page with UAF object: spray target objects

10 Exploit UAF

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 30

https://github.com/a13xp0p0v/kernel-hack-drill/blob/master/drill_uaf_write_msg_msg.c

Cross-Cache Attack in Kernel Hack Drill

Standard cross-cache procedure, see the code: kernel-hack-drill/drill_uaf_write_msg_msg.c

1 Collect the needed info in /sys/kernel/slab: cpu_partial=120, objs_per_slab=42

2 Create a new active slab: allocate objs_per_slab objects

3 Allocate (objs_per_slab * cpu_partial) objects for the partial list

4 Create the vulnerable slab: allocate objs_per_slab objects

5 Obtain dangling reference to the vulnerable object for UAF

6 Create a new active slab: allocate objs_per_slab objects

7 Free the slab with UAF object: free (objs_per_slab * 2 - 1) objects before the last one

8 Clean up the partial list: free one of each objs_per_slab objects in the reserved slabs

9 Reclaim the page with UAF object: spray target objects

10 Exploit UAF

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 30

https://github.com/a13xp0p0v/kernel-hack-drill/blob/master/drill_uaf_write_msg_msg.c

Cross-Cache Attack in Kernel Hack Drill

Standard cross-cache procedure, see the code: kernel-hack-drill/drill_uaf_write_msg_msg.c

1 Collect the needed info in /sys/kernel/slab: cpu_partial=120, objs_per_slab=42

2 Create a new active slab: allocate objs_per_slab objects

3 Allocate (objs_per_slab * cpu_partial) objects for the partial list

4 Create the vulnerable slab: allocate objs_per_slab objects

5 Obtain dangling reference to the vulnerable object for UAF

6 Create a new active slab: allocate objs_per_slab objects

7 Free the slab with UAF object: free (objs_per_slab * 2 - 1) objects before the last one

8 Clean up the partial list: free one of each objs_per_slab objects in the reserved slabs

9 Reclaim the page with UAF object: spray target objects

10 Exploit UAF

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 30

https://github.com/a13xp0p0v/kernel-hack-drill/blob/master/drill_uaf_write_msg_msg.c

Cross-Cache Attack in Kernel Hack Drill

Standard cross-cache procedure, see the code: kernel-hack-drill/drill_uaf_write_msg_msg.c

1 Collect the needed info in /sys/kernel/slab: cpu_partial=120, objs_per_slab=42

2 Create a new active slab: allocate objs_per_slab objects

3 Allocate (objs_per_slab * cpu_partial) objects for the partial list

4 Create the vulnerable slab: allocate objs_per_slab objects

5 Obtain dangling reference to the vulnerable object for UAF

6 Create a new active slab: allocate objs_per_slab objects

7 Free the slab with UAF object: free (objs_per_slab * 2 - 1) objects before the last one

8 Clean up the partial list: free one of each objs_per_slab objects in the reserved slabs

9 Reclaim the page with UAF object: spray target objects

10 Exploit UAF

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 30

https://github.com/a13xp0p0v/kernel-hack-drill/blob/master/drill_uaf_write_msg_msg.c

Debugging Cross-Cache Attack: Kernel Patch

diff --git a/ipc/msgutil.c b/ipc/msgutil.c
@@ -64,6 +64,7 @@ static struct msg_msg *alloc_msg(size_t len)

msg = kmem_buckets_alloc(msg_buckets, sizeof(*msg) + alen, GFP_KERNEL);
if (msg == NULL)

return NULL;
+ printk("msg_msg 0x%lx\n", (unsigned long)msg);

msg->next = NULL;
msg->security = NULL;

diff --git a/mm/slub.c b/mm/slub.c
@@ -3140,6 +3140,7 @@ static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)

while (slab_to_discard) {
slab = slab_to_discard;
slab_to_discard = slab_to_discard->next;

+ printk("__put_partials: cache 0x%lx slab 0x%lx\n", (unsigned long)s, (unsigned long)slab);

stat(s, DEACTIVATE_EMPTY);
discard_slab(s, slab);

__put_partials() calls discard_slab(), which moves the slab to the page allocator

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 31

Debugging Cross-Cache Attack: Console Output and GDB

Legend: kernel log, stdout, GDB session (with bata24/gef)

[49.755740] drill: kmalloc’ed item 5081 (0xffff8880068878a0, size 95)

[+] current_n: 5082 (next for allocating)
4) obtain dangling reference from use-after-free bug
[+] uaf_n: 5081

gef> slab-contains 0xffff8880068878a0
[+] Wait for memory scan
slab: 0xffffea00001a21c0
kmem_cache: 0xffff88800384e800
base: 0xffff888006887000
name: kmalloc-rnd-14-96 size: 0x60 num_pages: 0x1

[51.371255] __put_partials: cache 0xffff88800384e800 slab 0xffffea00001a21c0
[51.463570] msg_msg 0xffff8880068878a0

The drill_item_t object 0xffff8880068878a0 in slab 0xffffea00001a21c0

is reallocated as msg_msg

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 32

In My Humble Opinion

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 33

Cross-Cache Attack: Adoption to AF_VSOCK Exploit

The vulnerable virtio_vsock_sock client object is allocated together with the server one

It is harmful for the attack (Limitation #1):

Not closing server vsock prevents complete freeing of UAF slab

Closing server vsock breaks UAF

How can we cope with it?

@v4bel and @qwerty used the SLUBStick technique

My idea: what if we hit connect() with a signal very early?

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 34

Cross-Cache Attack: Adoption to AF_VSOCK Exploit

The vulnerable virtio_vsock_sock client object is allocated together with the server one

It is harmful for the attack (Limitation #1):

Not closing server vsock prevents complete freeing of UAF slab

Closing server vsock breaks UAF

How can we cope with it?

@v4bel and @qwerty used the SLUBStick technique

My idea: what if we hit connect() with a signal very early?

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 34

Race Conditions Are Awful/Awesome

I used one more race condition to exploit the main race condition

1 Hit vsock connect() with the "immortal" signal 33 after 10000 ns

2 Check whether the race condition succeeded:

The connect() syscall should return "Interrupted system call"

Connecting to server vsock from another test client vsock should succeed

3 If that is true, only a single vulnerable vsock was created

4 Limitation #1 (paired object creation) is bypassed

5 Cool, the cross-cache attack for vsock is unlocked!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 35

AF_VSOCK Exploit Speedrun

This smart testing of signal vs connect() state also made the exploit much faster

The UAF write can now be triggered once per second instead of once per several minutes

Limitation #2 (unstable race condition) is mitigated

Limitation #5 (kworker oops in 8 sec) is bypassed

To counter Limitation #4 (kworker oops just after UAF), I used one more race condition

Idea by @v4bel and @qwerty

Call listen() for vulnerable vsock just after connect() provoking UAF

If we are lucky, listen() executes before UAF-kworker and prevents null-ptr-deref

This is the main source of instability of the whole exploit

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 36

Not So Fast: CVE-2024-50264 Limitations

1 Vulnerable virtio_vsock_sock client object is allocated together with the server one

2 Reproducing this race condition is very unstable

3 UAF write happens in kworker within few µs after kfree()

4 Null-ptr-deref happens in kworker right after UAF write

5 If this kernel oops is avoided, another null-ptr-deref happens

in kworker after VSOCK_CLOSE_TIMEOUT (8 sec)

6 Kworker hangs if virtio_vsock_sock.tx_lock is not zero

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 37

https://www.youtube.com/watch?v=hbKEdmPPxy4

Not So Fast: Cross-Cache Attack is Too Late

UAF write in kworker happens within few µs after kfree(virtio_vsock_sock)

The cross-cache attack is too slow

To deal with Limitation #3, I also used a well-known technique by Jann Horn

googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html

Hit kworker with a timer interrupt that has a lot of epoll watches registered for timerfd

1 Call timerfd_create(CLOCK_MONOTONIC, 0)

2 Create 8 forks, call dup() 100 times for timertfd in each fork

3 Call epoll_create() 500 times in each fork, register epoll fd for each duplicated fd

4 Don’t exceed /proc/sys/fs/epoll/max_user_watches (8Ö100Ö500 < 446976)

5 Shoot into kworker setting the proper timeout:

timerfd_settime(timerfd, TFD_TIMER_CANCEL_ON_SET, &retard_tmo, NULL)

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 38

https://googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html

Not So Fast: Cross-Cache Attack is Too Late

UAF write in kworker happens within few µs after kfree(virtio_vsock_sock)

The cross-cache attack is too slow

To deal with Limitation #3, I also used a well-known technique by Jann Horn

googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html

Hit kworker with a timer interrupt that has a lot of epoll watches registered for timerfd

1 Call timerfd_create(CLOCK_MONOTONIC, 0)

2 Create 8 forks, call dup() 100 times for timertfd in each fork

3 Call epoll_create() 500 times in each fork, register epoll fd for each duplicated fd

4 Don’t exceed /proc/sys/fs/epoll/max_user_watches (8Ö100Ö500 < 446976)

5 Shoot into kworker setting the proper timeout:

timerfd_settime(timerfd, TFD_TIMER_CANCEL_ON_SET, &retard_tmo, NULL)

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 38

https://googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html

Not So Fast: Cross-Cache Attack is Too Late

UAF write in kworker happens within few µs after kfree(virtio_vsock_sock)

The cross-cache attack is too slow

To deal with Limitation #3, I also used a well-known technique by Jann Horn

googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html

Hit kworker with a timer interrupt that has a lot of epoll watches registered for timerfd

1 Call timerfd_create(CLOCK_MONOTONIC, 0)

2 Create 8 forks, call dup() 100 times for timertfd in each fork

3 Call epoll_create() 500 times in each fork, register epoll fd for each duplicated fd

4 Don’t exceed /proc/sys/fs/epoll/max_user_watches (8Ö100Ö500 < 446976)

5 Shoot into kworker setting the proper timeout:

timerfd_settime(timerfd, TFD_TIMER_CANCEL_ON_SET, &retard_tmo, NULL)

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 38

https://googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html

Not So Fast: Cross-Cache Attack is Too Late

UAF write in kworker happens within few µs after kfree(virtio_vsock_sock)

The cross-cache attack is too slow

To deal with Limitation #3, I also used a well-known technique by Jann Horn

googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html

Hit kworker with a timer interrupt that has a lot of epoll watches registered for timerfd

1 Call timerfd_create(CLOCK_MONOTONIC, 0)

2 Create 8 forks, call dup() 100 times for timertfd in each fork

3 Call epoll_create() 500 times in each fork, register epoll fd for each duplicated fd

4 Don’t exceed /proc/sys/fs/epoll/max_user_watches (8Ö100Ö500 < 446976)

5 Shoot into kworker setting the proper timeout:

timerfd_settime(timerfd, TFD_TIMER_CANCEL_ON_SET, &retard_tmo, NULL)

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 38

https://googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html

Not So Fast: Cross-Cache Attack is Too Late

UAF write in kworker happens within few µs after kfree(virtio_vsock_sock)

The cross-cache attack is too slow

To deal with Limitation #3, I also used a well-known technique by Jann Horn

googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html

Hit kworker with a timer interrupt that has a lot of epoll watches registered for timerfd

1 Call timerfd_create(CLOCK_MONOTONIC, 0)

2 Create 8 forks, call dup() 100 times for timertfd in each fork

3 Call epoll_create() 500 times in each fork, register epoll fd for each duplicated fd

4 Don’t exceed /proc/sys/fs/epoll/max_user_watches (8Ö100Ö500 < 446976)

5 Shoot into kworker setting the proper timeout:

timerfd_settime(timerfd, TFD_TIMER_CANCEL_ON_SET, &retard_tmo, NULL)

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 38

https://googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html

Not So Fast: Cross-Cache Attack is Too Late

UAF write in kworker happens within few µs after kfree(virtio_vsock_sock)

The cross-cache attack is too slow

To deal with Limitation #3, I also used a well-known technique by Jann Horn

googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html

Hit kworker with a timer interrupt that has a lot of epoll watches registered for timerfd

1 Call timerfd_create(CLOCK_MONOTONIC, 0)

2 Create 8 forks, call dup() 100 times for timertfd in each fork

3 Call epoll_create() 500 times in each fork, register epoll fd for each duplicated fd

4 Don’t exceed /proc/sys/fs/epoll/max_user_watches (8Ö100Ö500 < 446976)

5 Shoot into kworker setting the proper timeout:

timerfd_settime(timerfd, TFD_TIMER_CANCEL_ON_SET, &retard_tmo, NULL)

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 38

https://googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html

Not So Fast: Cross-Cache Attack is Too Late

UAF write in kworker happens within few µs after kfree(virtio_vsock_sock)

The cross-cache attack is too slow

To deal with Limitation #3, I also used a well-known technique by Jann Horn

googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html

Hit kworker with a timer interrupt that has a lot of epoll watches registered for timerfd

1 Call timerfd_create(CLOCK_MONOTONIC, 0)

2 Create 8 forks, call dup() 100 times for timertfd in each fork

3 Call epoll_create() 500 times in each fork, register epoll fd for each duplicated fd

4 Don’t exceed /proc/sys/fs/epoll/max_user_watches (8Ö100Ö500 < 446976)

5 Shoot into kworker setting the proper timeout:

timerfd_settime(timerfd, TFD_TIMER_CANCEL_ON_SET, &retard_tmo, NULL)

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 38

https://googleprojectzero.blogspot.com/2022/03/racing-against-clock-hitting-tiny.html

Achieved msg_msg Out-Of-Bounds Read

vsock UAF changes the msg_msg data size from 48 bytes to 8192 (MSGMAX)

Cool, msgrcv() performs out-of-bounds read of kernel memory

What does infoleak provide?

A kernel address 0xffffffff8233cfa0

GDB shows that it is pointer to socket_file_ops()

Which kernel object stores it? It’s struct file!

It contains f_cred pointer, which also leaked

This infoleak works with high probability

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 39

What’s Next?

The most interesting / difficult part of the research

Then I needed arbitrary address writing

for privilege escalation.

I wanted to implement data-only attack

without control flow hijacking.

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 40

How About Dirty Page Table Attack?

Good description: yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

Attacking page tables requires knowing the physical address of kernel text/heap

How about bruteforcing?

No, I can trigger UAF around 5 times before the kworker dies — not enough

How about a KASLR infoleak from msg_msg out-of-bounds read?

Ok, let’s give it a try!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 41

https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

How About Dirty Page Table Attack?

Good description: yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

Attacking page tables requires knowing the physical address of kernel text/heap

How about bruteforcing?

No, I can trigger UAF around 5 times before the kworker dies — not enough

How about a KASLR infoleak from msg_msg out-of-bounds read?

Ok, let’s give it a try!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 41

https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

How About Dirty Page Table Attack?

Good description: yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

Attacking page tables requires knowing the physical address of kernel text/heap

How about bruteforcing?

No, I can trigger UAF around 5 times before the kworker dies — not enough

How about a KASLR infoleak from msg_msg out-of-bounds read?

Ok, let’s give it a try!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 41

https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

Physical Versus Virtual KASLR

VM run #1

gef> ksymaddr-remote
[+] Wait for memory scan
0xffffffff98400000 T _text

gef> v2p 0xffffffff98400000
Virt: 0xffffffff98400000 -> Phys: 0x57400000

VM run #2

gef> ksymaddr-remote
[+] Wait for memory scan
0xffffffff81800000 T _text

gef> v2p 0xffffffff81800000
Virt: 0xffffffff81800000 -> Phys: 0x18600000

Virtual address minus physical address:

VM run #1: 0xffffffff98400000 = 0x57400000 = 0xffffffff41000000

VM run #2: 0xffffffff81800000 = 0x18600000 = 0xffffffff69200000

0xffffffff41000000 != 0xffffffff69200000

Sorry, leaking the virtual KASLR offset doesn’t help against the physical KASLR

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 42

Physical KASLR Versus Virtual KASLR

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 43

Still Needed to Invent Arbitrary Address Writing Primitive

1 Dirty Page Table Attack?

Requires page allocator feng-shui to leak the kernel physical address

No, would be too complicated

2 Turn UAF write to some kernel object into arbitrary address writing?

Not so easy... Exhausting!

Looked through dozens of different kernel objects

Read dozens of kernel exploit write-ups

Tried Kernel Exploitation Dashboard by Eduardo Vela & KernelCTF team

Then focused on pipe_buffer kernel object

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 44

Target for UAF Write: struct pipe_buffer

We can make pipe_buffers of similar size with virtio_vsock_sock:

Reallocate the write end of the pipe

fcntl(pipe_fd[1], F_SETPIPE_SZ, PAGE_SIZE * 2);

The object size becomes: 2 * sizeof(struct pipe_buffer) = 80

Suitable for kmalloc-96, like virtio_vsock_sock

Attacker-controlled bytes of vsock UAF write change pipe_buffer.flags

It’s the original Dirty Pipe attack by Max Kellermann dirtypipe.cm4all.com

Even doesn’t need an infoleak

One shot, wow, let’s try!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 45

https://dirtypipe.cm4all.com/

Target for UAF Write: struct pipe_buffer

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 46

First of All, Drill!

Created a Dirty Pipe prototype in kernel-hack-drill

See the code: kernel-hack-drill/drill_uaf_write_pipe_buffer.c

Performs cross-cache attack: reclaims drill_item_t as pipe_buffers

Exploits UAF write to drill_item_t struct:

⋆ Controlled bytes at offset 24

Attacker-controlled bytes modify pipe_buffer.flags

Implements the Dirty Pipe attack

LPE in one shot without infoleak

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 47

https://www.pngall.com/wp-content/uploads/4/Drill-Machine-PNG-Free-Download.png

https://github.com/a13xp0p0v/kernel-hack-drill/blob/master/drill_uaf_write_pipe_buffer.c

Not So Fast: CVE-2024-50264 Limitations

1 Vulnerable virtio_vsock_sock client object is allocated together with the server one

2 Reproducing this race condition is very unstable

3 UAF write happens in kworker within few µs after kfree()

4 Null-ptr-deref happens in kworker right after UAF write

5 If this kernel oops is avoided, another null-ptr-deref happens

in kworker after VSOCK_CLOSE_TIMEOUT (8 sec)

6 Kworker hangs if virtio_vsock_sock.tx_lock is not zero

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 48

https://www.youtube.com/watch?v=hbKEdmPPxy4

Target for UAF Write: struct pipe_buffer

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 49

Target for UAF Write: struct pipe_buffer

I can do splice() from file to pipe starting from zero offset to bypass Limitation #6!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 50

Target for UAF Write: struct pipe_buffer (No Way)

Oh no, pipe_buffer.ops gets corrupted by 4 zero bytes of peer_fwd_cnt!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 51

Target for UAF Write: struct pipe_buffer (No Way)

Oh no, pipe_buffer.ops gets corrupted by 4 zero bytes of peer_fwd_cnt!

Changing peer_fwd_cnt requires sending data through vsock

But successful vsock connect() makes the UAF impossible

No way to execute the original Dirty Pipe attack

Suddenly I got a bright idea

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 52

Target for UAF Write: struct pipe_buffer (No Way)

Oh no, pipe_buffer.ops gets corrupted by 4 zero bytes of peer_fwd_cnt!

Changing peer_fwd_cnt requires sending data through vsock

But successful vsock connect() makes the UAF impossible

No way to execute the original Dirty Pipe attack

Suddenly I got a bright idea

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 52

What If?

New hope

What if I allocate 4 pipe_buffers in kmalloc-192?

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 53

Target for UAF Write: Four pipe_buffers

Oh no, pipe_buffer.ops is corrupted

by 4 zero bytes!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 54

Target for UAF Write: Four pipe_buffers

Oh no, pipe_buffer.ops is corrupted

by 4 zero bytes!

The kernel crashes if I read from the pipe

Idea: I discarded the first pipe_buffer before UAF

In that case the bad pipe_buffer.ops isn’t used!

How to do it without changing offset:

splice(pipe_fds[i][0], NULL,

temp_pipe_fd[1], NULL, 1, 0);

read(temp_pipe_fd[0],

pipe_data_to_read, 1);

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 55

Target for UAF Write: Four pipe_buffers

Made flags of pipe_buffer #3 zero by

using splice() from file

splice(temp_file_fd, &file_offset,

pipe_fds[i][1], NULL, 1, 0);

[+] Corrupted pipe_buffer.page! YES!

kernel-hack-drill helped to develop it

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 56

Last Revenge From Physical KASLR

We don’t know where the kernel text is inside vmemmap

We can’t point pipe_buffer.page to kernel code

Let’s shoot to the leaked struct cred in the kernel heap

I can calculate the offset of struct page poniting to cred:

#define STRUCT_PAGE_SZ 64lu

#define PAGE_ADDR_OFFSET(addr) (((addr & 0xffffffflu) >‌> 12) * STRUCT_PAGE_SZ)

uaf_val = PAGE_ADDR_OFFSET(cred_addr);

Don’t need to know the vmemmap_base!

[!] I overwrite only 4 lower bytes of pipe_buffer.page

Randomized vmemmap_base address has only 2 random bits in lower bytes

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 57

Bruteforce 2 Bits

In case of fail reading from pipe simply returns "Bad address"

In case of success reading from pipe gives struct cred contents

Finally, I write zero pipe, overwrite euid and egid, and I AM ROOT

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 58

Demo Time

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 59

Conclusion

Bug collision is painful

But finishing the research anyway is rewarding

Try my open source project

github.com/a13xp0p0v/kernel-hack-drill

kernel-hack-drill is a useful testing environment

for Linux kernel security researchers

Contributors are always welcome!

Alexander Popov Kernel-Hack-Drill: Environment For Developing Linux Kernel Exploits 60

https://github.com/a13xp0p0v/kernel-hack-drill%20

Thanks 감사합니다

Enjoy the conference!

Contacts:

a13xp0p0v

a13xp0p0v@tuta.io

Blog: a13xp0p0v.github.io

Channel: t.me/linkersec

http://a13xp0p0v.github.io
https://t.me/linkersec

