
KASan in a Bare-Metal Hypervisor

Alexander Popov

LinuxCon Japan
July 13, 2016

ptsecurity.com

2Motivation

• C and C++ are not memory safe

• Buffer overflow and use-after-free bugs can be maliciously
exploited

• We want to get rid of such bugs in our C code

• KASan is a great technology, let's use it for PT hypervisor!

ptsecurity.com

3Agenda

ptsecurity.com

• Basic ideas behind KASan

• What is a bare-metal hypervisor

• Porting KASan to a bare-metal hypervisor:

– Main steps

– Pitfalls

– How to make KASan checks more strict and multi-purposed

• Bonus

4KASan (Kernel Address Sanitizer)

ptsecurity.com

• KASan is a dynamic memory error detector for Linux kernel

• Based on work by Andrey Konovalov and other great people at
AddressSanitizer project, came to kernel from Andrey Ryabinin

• Trophies: more than 65 memory errors found in Linux kernel

• Low penalty: ~1.5x slowdown, ~2x memory usage

• KASan is a debugging tool giving maximum profit with fuzzing

• Can be used in bare-metal software

5KASan shadow memory legend

Every aligned 8 bytes can have 9 states.

KASan shadow encoding:

• 0 if access to all 8 bytes is valid

• N if access only to first N bytes is valid (1 <= N <= 7)

• Negative value (poison) if access to all 8 bytes is invalid

ptsecurity.com

6Mapping to KASan shadow (x86-64)

ptsecurity.com

Kernel address space (47 bits, 128 TB)

KASan shadow memory (44 bits, 16 TB)

Mappinng:

shadow_addr = KASAN_SHADOW_OFFSET + (addr >> 3)

0xffff800000000000 0xffffffffffffffff
0xffffec0000000000

0xfffffc0000000000

7Compile-time instrumentation

ptsecurity.com

• gcc adds calling of __asan_load##size() or
__asan_store##size() before memory access

• gcc adds redzones around stack buffers and globals

8A bare-metal hypervisor

ptsecurity.com

• What is a hypervisor

• What does “bare-metal” mean

• How does it work with memory

9Step 1: Page tables for shadow

ptsecurity.com

Hypervisor memory (~200 MB)

KASan shadow memory (~25 MB)

0x100000000 0x10c80a000
0x180000000

0x181901400

...

N.B. Choosing KASAN_SHADOW_OFFSET is tricky

N.B. Ability to check whether hypervisor code
 touches foreign memory

10Step 2: Sanitize a single source file

• Specify these gcc flags:
-fsanitize=kernel-address

-fasan-shadow-offset=...

--param asan-instrumentation-with-call-threshold=0

N.B. The outline instrumentation is easier to start with

N.B. The build system should support specifying different
flags for different source files

• Add KASan implementation from mm/kasan/kasan.c little
by little (N.B. KASan is GPL)

• Experiment till shadow works fine

ptsecurity.com

11Step 3: Track global variables

• Additionally specify --param asan-globals=1

• Take care of .ctors section in the linker script

• Add do_ctors() looking at init/main.c

• Poison the redzones by negative KASAN_GLOBAL_REDZONE
in __asan_register_globals()

• Use -fsanitize-sections=... to instrument globals in
all sections

• N.B. gcc does not create a KASan constructor for globals
declared in assembler

ptsecurity.com

12Step 4: Track heap

• Make allocator add redzones around every allocation

• Introduce kasan_alloc() which poisons shadow of
redzones by KASAN_HEAP_REDZONE

• Introduce kasan_free() which poisons shadow of freed
memory by KASAN_HEAP_AFTER_FREE

• If there is a stack of allocators, integrate KASan with each one
to find more bugs: reserved memory != accessible memory

• Implement delayed freeing, which reduces the probability of
missing use-after-free

ptsecurity.com

13Step 5: Poison shadow by default

ptsecurity.com

• Fill whole shadow memory by KASAN_GENERAL_POISON
in kasan_init()

• It's a whitelist instead of a blacklist

• A perfectionist sleeps better now :)

14Step 6: Track stack

• Additionally specify --param asan-stack=1

• When GCC sanitizes stack accesses it works with KASan
shadow on its own

• Pitfall 1: GCC instruments stack expecting that stack shadow
is filled by 0. A perfectionist is sad.

• Pitfall 2: Don't put kasan_init() call into a function with
local variables.

ptsecurity.com

15Step 7: Design a noKASan API

• Allow memory access without KASan checks in:

– nokasan_r64(), nokasan_w64() and others

– nokasan_memset(), nokasan_memcmp() and others

• checking the whole region at once

• avoiding copying the code

• except nokasan_snprintf(), which works with arglist

N.B. Now we can very carefully apply this API to the
hypervisor code which legitimately works with foreign memory

ptsecurity.com

16Steps 8,9,10: Apply to the whole project

• Cover files by KASan gradually

– Fix memory access bugs

– Apply noKASan API very carefully

N.B. Changed memory layout and timings may trigger bugs

N.B. Thorough code review by the code authors is vital

• Move kasan_init() as early as possible (not so easy)

• This took me 3 months to do (project size is 55000 SLOC)

ptsecurity.com

17Next steps: Continuously support KASan

• Be paranoid, check that KASan is switched on

• Create a test for KASan and run it regularly

• Teach the team how to interpret KASan reports

• Control noKASan API usage

ptsecurity.com

18Summary

• KASan has been successfully ported to a bare-metal hypervisor
and has found some very tricky memory errors in it

• The new environment allowed to add new features to KASan

• Using KASan in new environments make it better:

 patch to the Linux kernel mainline

 commit 5d5aa3cfca5cf74cd928daf3674642e6004328d1
 x86/kasan: Fix KASAN shadow region page tables

• KASan is very helpful for developing

ptsecurity.com

19Undefined Behaviour Sanitizer (UBSan)

• UB is a result of executing the code which doesn't have a
prescribed behaviour in the language specification

• Why UB is dangerous

• Why UB exists

• The programmers must avoid it, but sometimes they fail

• UBSan can help, even in bare-metal projects!

ptsecurity.com

20Porting UBSan to a bare-metal hypervisor

• Specify -fsanitize=undefined for a single source file

• Add __ubsan_handle_*() stubs

• Experiment with UB and add UBSan implementation little by
little looking at lib/ubsan.c

• Choose the needed subset of UBSan flags

• Instrument the whole project and run it

• Become scared and carefully fix detected UB

ptsecurity.com

21

Thanks. Questions?
alex.popov@linux.com

alpopov@ptsecurity.com

ptsecurity.com

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 18
	Страница 21

