
KASan in a Bare-Metal Hypervisor

Alexander Popov

PHDays VI
May 17, 2016

ptsecurity.com

2Motivation

• C and C++ are not memory safe

• Buffer overflow and use-after-free bugs can be maliciously exploited

• We want to get rid of such bugs in our C code

• KASan is a great technology, let's use it for PT hypervisor!

ptsecurity.com

3Agenda

ptsecurity.com

• Basic ideas behind KASan

• What is a bare-metal hypervisor

• Porting KASan to a bare-metal hypervisor:

– Main steps

– Pitfalls

– How to make KASan checks much more strict and multi-purposed

4KASan (Kernel Address Sanitizer)

ptsecurity.com

• KASan is a dynamic memory error detector for Linux kernel

• Based on work by Andrey Konovalov and others at AddressSanitizer
project. The KASan patch set came to Linux kernel from Andrey
Ryabinin.

• Trophies: more than 65 memory errors found in Linux kernel

• KASan is a debug tool giving maximum profit with fuzzing

• Low penalty: ~1.5x slowdown, ~2x memory usage

• Can be used in bare-metal software

5KASan shadow memory legend

Every aligned 8 bytes can have 9 states. KASan shadow encoding:

• 0 if access to all 8 bytes is valid

• N if access only to first N bytes is valid (1 <= N <= 7)

• Negative value (poison) if access to all 8 bytes is invalid

ptsecurity.com

6Mapping to KASan shadow (x86-64)

ptsecurity.com

Kernel address space (47 bits, 128 TB)

KASan shadow memory (44 bits, 16 TB)

Mappinng:

shadow_addr = KASAN_SHADOW_OFFSET + (addr >> 3)

0xffff800000000000 0xffffffffffffffff
0xffffec0000000000

0xfffffc0000000000

7Compile-time instrumentation

ptsecurity.com

• gcc adds calling of __asan_load##size() or
__asan_store##size() before memory access

• gcc adds redzones around stack buffers and globals

8A bare-metal hypervisor

ptsecurity.com

• What is a hypervisor

• What does “bare-metal” mean

• How does it work with memory

9Step 1: Page tables for shadow

ptsecurity.com

Hypervisor memory (~200 MB)

KASan shadow memory (~25 MB)

0x100000000 0x10c80a000
0x180000000

0x181901400

...

N.B. Choosing KASAN_SHADOW_OFFSET is tricky

N.B. Ability to check whether hypervisor code
 touches foreign memory

10Step 2: Sanitize a single source file

• Specify these gcc flags:
 -fsanitize=kernel-address

 -fasan-shadow-offset=...

N.B. The build system should support specifying different flags
for different source files

• Add KASan implementation from mm/kasan/kasan.c little by little

N.B. KASan is GPL

• Experiment till shadow works fine

ptsecurity.com

11Step 3: Track global variables

• Additionally specify --param asan-globals=1

• Take care of .ctors section in the linker script

• Add do_ctors() looking at init/main.c

• Add struct kasan_global dictated by gcc

• Poison redzones of globals by negative KASAN_GLOBAL_REDZONE
in __asan_register_globals()

• N.B. gcc does not create a KASan constructor for globals declared in
assembler

ptsecurity.com

12Step 4: Track heap

• Make allocator add redzones around every allocation

• Introduce kasan_alloc() and kasan_free() which poison
redzones by KASAN_HEAP_REDZONE

• Delayed freeing decreases the probability of missing use-after-free

ptsecurity.com

13Step 5: Poison shadow by default

ptsecurity.com

• Fill whole shadow memory by KASAN_GENERAL_POISON
in kasan_init()

• Different from KASan in Linux kernel

• Whitelist instead of blacklist

• A perfectionist sleeps better now :)

14Step 6: Track stack

• Additionally specify --param asan-stack=1

• When GCC sanitizes stack accesses it works with KASan shadow
on its own

• Pitfall 1: GCC expects that shadow is filled by 0. So don't make
GCC sad with poisoning the stack shadow by default.

• Pitfall 2: Don't put kasan_init() call into a function with local
variables.

ptsecurity.com

15Step 7: Design a noKASan API

• Allows memory access without KASan checks

– nokasan_r64() , nokasan_w64() and others

– nokasan_memset() , nokasan_memcmp() and others

• check the whole region at once

• avoid copying the code

N.B. nokasan_snprintf() is an uninstrumented copy:
tracking accesses to arglist is a useless complication

• Now we can very carefully apply this API to the hypervisor code
which legitimately works with foreign memory

ptsecurity.com

16Steps 8,9,10: Apply to the whole project

• Cover files by KASan gradually

– Fix memory access bugs

– Apply noKASan API very carefully

N.B. Changed memory layout and timings trigger new bugs too

N.B. Thorough code review by the code authors is vital

• Move kasan_init() as early as possible

• This took me 3 months to do (project size is 55000 SLOC)

ptsecurity.com

17Summary

• KASan has been successfully ported to a bare-metal hypervisor and
has found some very tricky memory errors in it

• The new environment allowed to add new features to KASan

• Using KASan in new environments make it better:

patch to the Linux kernel mainline

 commit 5d5aa3cfca5cf74cd928daf3674642e6004328d1
 x86/kasan: Fix KASAN shadow region page tables

• KASan is very helpful for developing

ptsecurity.com

18

Thanks. Questions?
alex.popov@linux.com

alpopov@ptsecurity.com

ptsecurity.com

	Страница 1
	Страница 2
	Страница 3
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18

